Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
272 views
in Technique[技术] by (71.8m points)

python - How to concatenate two layers in keras?

I have an example of a neural network with two layers. The first layer takes two arguments and has one output. The second should take one argument as result of the first layer and one additional argument. It should looks like this:

x1  x2  x3
   /   /
  y1   /
     /
    y2

So, I'd created a model with two layers and tried to merge them but it returns an error: The first layer in a Sequential model must get an "input_shape" or "batch_input_shape" argument. on the line result.add(merged).

Model:

first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

result = Sequential()
merged = Concatenate([first, second])
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
result.add(merged)
result.compile(optimizer=ada_grad, loss=_loss_tensor, metrics=['accuracy'])
Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You're getting the error because result defined as Sequential() is just a container for the model and you have not defined an input for it.

Given what you're trying to build set result to take the third input x3.

first = Sequential()
first.add(Dense(1, input_shape=(2,), activation='sigmoid'))

second = Sequential()
second.add(Dense(1, input_shape=(1,), activation='sigmoid'))

third = Sequential()
# of course you must provide the input to result which will be your x3
third.add(Dense(1, input_shape=(1,), activation='sigmoid'))

# lets say you add a few more layers to first and second.
# concatenate them
merged = Concatenate([first, second])

# then concatenate the two outputs

result = Concatenate([merged,  third])

ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)

result.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

However, my preferred way of building a model that has this type of input structure would be to use the functional api.

Here is an implementation of your requirements to get you started:

from keras.models import Model
from keras.layers import Concatenate, Dense, LSTM, Input, concatenate
from keras.optimizers import Adagrad

first_input = Input(shape=(2, ))
first_dense = Dense(1, )(first_input)

second_input = Input(shape=(2, ))
second_dense = Dense(1, )(second_input)

merge_one = concatenate([first_dense, second_dense])

third_input = Input(shape=(1, ))
merge_two = concatenate([merge_one, third_input])

model = Model(inputs=[first_input, second_input, third_input], outputs=merge_two)
ada_grad = Adagrad(lr=0.1, epsilon=1e-08, decay=0.0)
model.compile(optimizer=ada_grad, loss='binary_crossentropy',
               metrics=['accuracy'])

To answer the question in the comments:

  1. How are result and merged connected? Assuming you mean how are they concatenated.

Concatenation works like this:

  a        b         c
a b c   g h i    a b c g h i
d e f   j k l    d e f j k l

i.e rows are just joined.

  1. Now, x1 is input to first, x2 is input into second and x3 input into third.

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...