Here is a sketch of the solution:
For each of the cells we will keep a counter of how big a square can be made using that cell as top left. Clearly all cells with 0 will have 0 as the count.
Start iterating from bottom right cell and go to bottom left, then go to one row up and repeat.
At each scan do this:
- If the cell has 0 assign
count=0
- If the cell has 1 and is an edge cell (bottom or right edge only), assign
count=1
- For all other cells, check the count of the cell on its right, right-below, and below. Take the min of them and add 1 and assign that to the count. Keep a global
max_count
variable to keep track of the max count so far.
At the end of traversing the matrix, max_count
will have the desired value.
Complexity is no more that the cost of traversal of the matrix.
This is how the matrix will look like after the traversal. Values in parentheses are the counts, i.e. biggest square that can be made using the cell as top left.
1(1) 0(0) 1(1) 0(0) 1(1) 0(0)
1(1) 0(0) 1(4) 1(3) 1(2) 1(1)
0(0) 1(1) 1(3) 1(3) 1(2) 1(1)
0(0) 0(0) 1(2) 1(2) 1(2) 1(1)
1(1) 1(1) 1(1) 1(1) 1(1) 1(1)
Implementation in Python
def max_size(mat, ZERO=0):
"""Find the largest square of ZERO's in the matrix `mat`."""
nrows, ncols = len(mat), (len(mat[0]) if mat else 0)
if not (nrows and ncols): return 0 # empty matrix or rows
counts = [[0]*ncols for _ in xrange(nrows)]
for i in reversed(xrange(nrows)): # for each row
assert len(mat[i]) == ncols # matrix must be rectangular
for j in reversed(xrange(ncols)): # for each element in the row
if mat[i][j] != ZERO:
counts[i][j] = (1 + min(
counts[i][j+1], # east
counts[i+1][j], # south
counts[i+1][j+1] # south-east
)) if i < (nrows - 1) and j < (ncols - 1) else 1 # edges
return max(c for rows in counts for c in rows)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…