Define your own roll
We can create a function that takes a window size argument w
and any other keyword arguments. We use this to build a new DataFrame
in which we will call groupby
on while passing on the keyword arguments via kwargs
.
Note: I didn't have to use
stride_tricks.as_strided
but it is succinct and in my opinion appropriate.
from numpy.lib.stride_tricks import as_strided as stride
import pandas as pd
def roll(df, w, **kwargs):
v = df.values
d0, d1 = v.shape
s0, s1 = v.strides
a = stride(v, (d0 - (w - 1), w, d1), (s0, s0, s1))
rolled_df = pd.concat({
row: pd.DataFrame(values, columns=df.columns)
for row, values in zip(df.index, a)
})
return rolled_df.groupby(level=0, **kwargs)
roll(df, 2).mean()
Open High Low Close
0 133.0350 133.2975 132.8250 132.930
1 132.9325 133.1200 132.6750 132.745
2 132.7425 132.8875 132.6075 132.710
3 132.7075 132.7875 132.6000 132.720
We can also use the pandas.DataFrame.pipe
method to the same effect:
df.pipe(roll, w=2).mean()
OLD ANSWER
Panel
has been deprecated. See above for updated answer.
see https://stackoverflow.com/a/37491779/2336654
define our own roll
def roll(df, w, **kwargs):
roll_array = np.dstack([df.values[i:i+w, :] for i in range(len(df.index) - w + 1)]).T
panel = pd.Panel(roll_array,
items=df.index[w-1:],
major_axis=df.columns,
minor_axis=pd.Index(range(w), name='roll'))
return panel.to_frame().unstack().T.groupby(level=0, **kwargs)
you should be able to:
roll(df, 2).apply(your_function)
Using mean
roll(df, 2).mean()
major Open High Low Close
1 133.0350 133.2975 132.8250 132.930
2 132.9325 133.1200 132.6750 132.745
3 132.7425 132.8875 132.6075 132.710
4 132.7075 132.7875 132.6000 132.720
f = lambda df: df.sum(1)
roll(df, 2, group_keys=False).apply(f)
roll
1 0 532.345
1 531.830
2 0 531.830
1 531.115
3 0 531.115
1 530.780
4 0 530.780
1 530.850
dtype: float64