Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
226 views
in Technique[技术] by (71.8m points)

python - Modifying a subset of rows in a pandas dataframe

Assume I have a pandas DataFrame with two columns, A and B. I'd like to modify this DataFrame (or create a copy) so that B is always NaN whenever A is 0. How would I achieve that?

I tried the following

df['A'==0]['B'] = np.nan

and

df['A'==0]['B'].values.fill(np.nan)

without success.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Use .loc for label based indexing:

df.loc[df.A==0, 'B'] = np.nan

The df.A==0 expression creates a boolean series that indexes the rows, 'B' selects the column. You can also use this to transform a subset of a column, e.g.:

df.loc[df.A==0, 'B'] = df.loc[df.A==0, 'B'] / 2

I don't know enough about pandas internals to know exactly why that works, but the basic issue is that sometimes indexing into a DataFrame returns a copy of the result, and sometimes it returns a view on the original object. According to documentation here, this behavior depends on the underlying numpy behavior. I've found that accessing everything in one operation (rather than [one][two]) is more likely to work for setting.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...