Use .loc
for label based indexing:
df.loc[df.A==0, 'B'] = np.nan
The df.A==0
expression creates a boolean series that indexes the rows, 'B'
selects the column. You can also use this to transform a subset of a column, e.g.:
df.loc[df.A==0, 'B'] = df.loc[df.A==0, 'B'] / 2
I don't know enough about pandas internals to know exactly why that works, but the basic issue is that sometimes indexing into a DataFrame returns a copy of the result, and sometimes it returns a view on the original object. According to documentation here, this behavior depends on the underlying numpy behavior. I've found that accessing everything in one operation (rather than [one][two]) is more likely to work for setting.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…