Here is mine computation of 1D FDCT and IFDCT by FFT with the same length:
//---------------------------------------------------------------------------
void DFCTrr(double *dst,double *src,double *tmp,int n)
{
// exact normalized DCT II by N DFFT
int i,j;
double nn=n,a,da=(M_PI*(nn-0.5))/nn,a0,b0,a1,b1,m;
for (j= 0,i=n-1;i>=0;i-=2,j++) dst[j]=src[i];
for (j=n-1,i=n-2;i>=0;i-=2,j--) dst[j]=src[i];
DFFTcr(tmp,dst,n);
m=2.0*sqrt(2.0);
for (a=0.0,j=0,i=0;i<n;i++,j+=2,a+=da)
{
a0=tmp[j+0]; a1= cos(a);
b0=tmp[j+1]; b1=-sin(a);
a0=(a0*a1)-(b0*b1);
if (i) a0*=m; else a0*=2.0;
dst[i]=a0;
}
}
//---------------------------------------------------------------------------
void iDFCTrr(double *dst,double *src,double *tmp,int n)
{
// exact normalized DCT III = iDCT II by N iDFFT
int i,j;
double nn=n,a,da=(M_PI*(nn-0.5))/nn,a0,m,aa,bb;
m=1.0/sqrt(2.0);
for (a=0.0,j=0,i=0;i<n;i++,j+=2,a+=da)
{
a0=src[i];
if (i) a0*=m;
aa= cos(a)*a0;
bb=+sin(a)*a0;
tmp[j+0]=aa;
tmp[j+1]=bb;
}
m=src[0]*0.25;
iDFFTrc(src,tmp,n);
for (j= 0,i=n-1;i>=0;i-=2,j++) dst[i]=src[j]-m;
for (j=n-1,i=n-2;i>=0;i-=2,j--) dst[i]=src[j]-m;
}
//---------------------------------------------------------------------------
dst
is destination vector [n]
src
is source vector [n]
tmp
is temp vector [2n]
These arrays should not overlap !!! It is taken from mine transform class so I hope did not forget to copy something.
XXXrr
means destination is real and source is also real domain
XXXrc
means destination is real and source is complex domain
XXXcr
means destination is complex and source is real domain
All data are double
arrays, for complex domain first number is Real and second Imaginary part so array is 2N
size. Both functions use FFT and iFFT if you need code also for them comment me. Just to be sure I added not fast implementation of them below. It is much easier to copy that because fast ones use too much of the transform class hierarchy
slow DFT,iDFT implementations for testing:
//---------------------------------------------------------------------------
void transform::DFTcr(double *dst,double *src,int n)
{
int i,j;
double a,b,a0,_n,q,qq,dq;
dq=+2.0*M_PI/double(n); _n=2.0/double(n);
for (q=0.0,j=0;j<n;j++,q+=dq)
{
a=0.0; b=0.0;
for (qq=0.0,i=0;i<n;i++,qq+=q)
{
a0=src[i];
a+=a0*cos(qq);
b+=a0*sin(qq);
}
dst[j+j ]=a*_n;
dst[j+j+1]=b*_n;
}
}
//---------------------------------------------------------------------------
void transform::iDFTrc(double *dst,double *src,int n)
{
int i,j;
double a,a0,a1,b0,b1,q,qq,dq;
dq=+2.0*M_PI/double(n);
for (q=0.0,j=0;j<n;j++,q+=dq)
{
a=0.0;
for (qq=0.0,i=0;i<n;i++,qq+=q)
{
a0=src[i+i ]; a1=+cos(qq);
b0=src[i+i+1]; b1=-sin(qq);
a+=(a0*a1)-(b0*b1);
}
dst[j]=a*0.5;
}
}
//---------------------------------------------------------------------------
So for testing just rewrite the names to DFFTcr
and iDFFTrc
(or use them to compare to your FFT,iFFT
) when the code works properly then implement your own FFT,iFFT For more info on that see:
2D DFCT
resize src
matrix to power of 2
by adding zeros, to use fast algorithm the size must be always power of 2
!!!
allocate NxN
real matrices tmp,dst
and 1xN
complex vector t
transform lines by DFCTrr
DFCT(tmp.line(i),src.line(i),t,N)
transpose tmp
matrix
transform lines by DFCTrr
DFCT(dst.line(i),tmp.line(i),t,N)
transpose dst
matrix
normalize dst
by multiply matrix by 0.0625
2D iDFCT
Is the same as above but use iDFCTrr
and multiply by 16.0
instead.
[Notes]
Be sure before implementing your own FFT and iFFT that they give the same result as mine otherwise the DCT/iDCT will not work properly !!!