Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.3k views
in Technique[技术] by (71.8m points)

math - Signed angle between two 3D vectors with same origin within the same plane

What I need is a signed angle of rotation between two vectors Va and Vb lying within the same 3D plane and having the same origin knowing that:

  1. The plane contatining both vectors is an arbitrary and is not parallel to XY or any other of cardinal planes
  2. Vn - is a plane normal
  3. Both vectors along with the normal have the same origin O = { 0, 0, 0 }
  4. Va - is a reference for measuring the left handed rotation at Vn

The angle should be measured in such a way so if the plane would be XY plane the Va would stand for X axis unit vector of it.

I guess I should perform a kind of coordinate space transformation by using the Va as the X-axis and the cross product of Vb and Vn as the Y-axis and then just using some 2d method like with atan2() or something. Any ideas? Formulas?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Use cross product of the two vectors to get the normal of the plane formed by the two vectors. Then check the dotproduct between that and the original plane normal to see if they are facing the same direction.

angle = acos(dotProduct(Va.normalize(), Vb.normalize()));
cross = crossProduct(Va, Vb);
if (dotProduct(Vn, cross) < 0) { // Or > 0
  angle = -angle;
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...