Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
143 views
in Technique[技术] by (71.8m points)

Python memory usage of numpy arrays

I'm using python to analyse some large files and I'm running into memory issues, so I've been using sys.getsizeof() to try and keep track of the usage, but it's behaviour with numpy arrays is bizarre. Here's an example involving a map of albedos that I'm having to open:

>>> import numpy as np
>>> import struct
>>> from sys import getsizeof
>>> f = open('Albedo_map.assoc', 'rb')
>>> getsizeof(f)
144
>>> albedo = struct.unpack('%df' % (7200*3600), f.read(7200*3600*4))
>>> getsizeof(albedo)
207360056
>>> albedo = np.array(albedo).reshape(3600,7200)
>>> getsizeof(albedo)
80

Well the data's still there, but the size of the object, a 3600x7200 pixel map, has gone from ~200 Mb to 80 bytes. I'd like to hope that my memory issues are over and just convert everything to numpy arrays, but I feel that this behaviour, if true, would in some way violate some law of information theory or thermodynamics, or something, so I'm inclined to believe that getsizeof() doesn't work with numpy arrays. Any ideas?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can use array.nbytes for numpy arrays, for example:

>>> import numpy as np
>>> from sys import getsizeof
>>> a = [0] * 1024
>>> b = np.array(a)
>>> getsizeof(a)
8264
>>> b.nbytes
8192

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...