Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
194 views
in Technique[技术] by (71.8m points)

python - Calculate time difference between Pandas Dataframe indices

I am trying to add a column of deltaT to a dataframe where deltaT is the time difference between the successive rows (as indexed in the timeseries).

time                 value

2012-03-16 23:50:00      1
2012-03-16 23:56:00      2
2012-03-17 00:08:00      3
2012-03-17 00:10:00      4
2012-03-17 00:12:00      5
2012-03-17 00:20:00      6
2012-03-20 00:43:00      7

Desired result is something like the following (deltaT units shown in minutes):

time                 value  deltaT

2012-03-16 23:50:00      1       0
2012-03-16 23:56:00      2       6
2012-03-17 00:08:00      3      12
2012-03-17 00:10:00      4       2
2012-03-17 00:12:00      5       2
2012-03-17 00:20:00      6       8
2012-03-20 00:43:00      7      23
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Note this is using numpy >= 1.7, for numpy < 1.7, see the conversion here: http://pandas.pydata.org/pandas-docs/dev/timeseries.html#time-deltas

Your original frame, with a datetime index

In [196]: df
Out[196]: 
                     value
2012-03-16 23:50:00      1
2012-03-16 23:56:00      2
2012-03-17 00:08:00      3
2012-03-17 00:10:00      4
2012-03-17 00:12:00      5
2012-03-17 00:20:00      6
2012-03-20 00:43:00      7

In [199]: df.index
Out[199]: 
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-16 23:50:00, ..., 2012-03-20 00:43:00]
Length: 7, Freq: None, Timezone: None

Here is the timedelta64 of what you want

In [200]: df['tvalue'] = df.index

In [201]: df['delta'] = (df['tvalue']-df['tvalue'].shift()).fillna(0)

In [202]: df
Out[202]: 
                     value              tvalue            delta
2012-03-16 23:50:00      1 2012-03-16 23:50:00         00:00:00
2012-03-16 23:56:00      2 2012-03-16 23:56:00         00:06:00
2012-03-17 00:08:00      3 2012-03-17 00:08:00         00:12:00
2012-03-17 00:10:00      4 2012-03-17 00:10:00         00:02:00
2012-03-17 00:12:00      5 2012-03-17 00:12:00         00:02:00
2012-03-17 00:20:00      6 2012-03-17 00:20:00         00:08:00
2012-03-20 00:43:00      7 2012-03-20 00:43:00 3 days, 00:23:00

Getting out the answer while disregarding the day difference (your last day is 3/20, prior is 3/17), actually is tricky

In [204]: df['ans'] = df['delta'].apply(lambda x: x  / np.timedelta64(1,'m')).astype('int64') % (24*60)

In [205]: df
Out[205]: 
                     value              tvalue            delta  ans
2012-03-16 23:50:00      1 2012-03-16 23:50:00         00:00:00    0
2012-03-16 23:56:00      2 2012-03-16 23:56:00         00:06:00    6
2012-03-17 00:08:00      3 2012-03-17 00:08:00         00:12:00   12
2012-03-17 00:10:00      4 2012-03-17 00:10:00         00:02:00    2
2012-03-17 00:12:00      5 2012-03-17 00:12:00         00:02:00    2
2012-03-17 00:20:00      6 2012-03-17 00:20:00         00:08:00    8
2012-03-20 00:43:00      7 2012-03-20 00:43:00 3 days, 00:23:00   23

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...