I have pandas dataframe df1
and df2
(df1 is vanila dataframe, df2 is indexed by 'STK_ID' & 'RPT_Date') :
>>> df1
STK_ID RPT_Date TClose sales discount
0 000568 20060331 3.69 5.975 NaN
1 000568 20060630 9.14 10.143 NaN
2 000568 20060930 9.49 13.854 NaN
3 000568 20061231 15.84 19.262 NaN
4 000568 20070331 17.00 6.803 NaN
5 000568 20070630 26.31 12.940 NaN
6 000568 20070930 39.12 19.977 NaN
7 000568 20071231 45.94 29.269 NaN
8 000568 20080331 38.75 12.668 NaN
9 000568 20080630 30.09 21.102 NaN
10 000568 20080930 26.00 30.769 NaN
>>> df2
TClose sales discount net_sales cogs
STK_ID RPT_Date
000568 20060331 3.69 5.975 NaN 5.975 2.591
20060630 9.14 10.143 NaN 10.143 4.363
20060930 9.49 13.854 NaN 13.854 5.901
20061231 15.84 19.262 NaN 19.262 8.407
20070331 17.00 6.803 NaN 6.803 2.815
20070630 26.31 12.940 NaN 12.940 5.418
20070930 39.12 19.977 NaN 19.977 8.452
20071231 45.94 29.269 NaN 29.269 12.606
20080331 38.75 12.668 NaN 12.668 3.958
20080630 30.09 21.102 NaN 21.102 7.431
I can get the last 3 rows of df2 by:
>>> df2.ix[-3:]
TClose sales discount net_sales cogs
STK_ID RPT_Date
000568 20071231 45.94 29.269 NaN 29.269 12.606
20080331 38.75 12.668 NaN 12.668 3.958
20080630 30.09 21.102 NaN 21.102 7.431
while df1.ix[-3:]
give all the rows:
>>> df1.ix[-3:]
STK_ID RPT_Date TClose sales discount
0 000568 20060331 3.69 5.975 NaN
1 000568 20060630 9.14 10.143 NaN
2 000568 20060930 9.49 13.854 NaN
3 000568 20061231 15.84 19.262 NaN
4 000568 20070331 17.00 6.803 NaN
5 000568 20070630 26.31 12.940 NaN
6 000568 20070930 39.12 19.977 NaN
7 000568 20071231 45.94 29.269 NaN
8 000568 20080331 38.75 12.668 NaN
9 000568 20080630 30.09 21.102 NaN
10 000568 20080930 26.00 30.769 NaN
Why ? How to get the last 3 rows of df1
(dataframe without index) ?
Pandas 0.10.1
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…