Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.4k views
in Technique[技术] by (71.8m points)

numpy - Python vectorizing nested for loops

I'd appreciate some help in finding and understanding a pythonic way to optimize the following array manipulations in nested for loops:

def _func(a, b, radius):
    "Return 0 if a>b, otherwise return 1"
    if distance.euclidean(a, b) < radius:
        return 1
    else:
        return 0

def _make_mask(volume, roi, radius):
    mask = numpy.zeros(volume.shape)
    for x in range(volume.shape[0]):
        for y in range(volume.shape[1]):
            for z in range(volume.shape[2]):
                mask[x, y, z] = _func((x, y, z), roi, radius)
    return mask

Where volume.shape (182, 218, 200) and roi.shape (3,) are both ndarray types; and radius is an int

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Approach #1

Here's a vectorized approach -

m,n,r = volume.shape
x,y,z = np.mgrid[0:m,0:n,0:r]
X = x - roi[0]
Y = y - roi[1]
Z = z - roi[2]
mask = X**2 + Y**2 + Z**2 < radius**2

Possible improvement : We can probably speedup the last step with numexpr module -

import numexpr as ne

mask = ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')

Approach #2

We can also gradually build the three ranges corresponding to the shape parameters and perform the subtraction against the three elements of roi on the fly without actually creating the meshes as done earlier with np.mgrid. This would be benefited by the use of broadcasting for efficiency purposes. The implementation would look like this -

m,n,r = volume.shape
vals = ((np.arange(m)-roi[0])**2)[:,None,None] + 
       ((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
mask = vals < radius**2

Simplified version : Thanks to @Bi Rico for suggesting an improvement here as we can use np.ogrid to perform those operations in a bit more concise manner, like so -

m,n,r = volume.shape    
x,y,z = np.ogrid[0:m,0:n,0:r]-roi
mask = (x**2+y**2+z**2) < radius**2

Runtime test

Function definitions -

def vectorized_app1(volume, roi, radius):
    m,n,r = volume.shape
    x,y,z = np.mgrid[0:m,0:n,0:r]
    X = x - roi[0]
    Y = y - roi[1]
    Z = z - roi[2]
    return X**2 + Y**2 + Z**2 < radius**2

def vectorized_app1_improved(volume, roi, radius):
    m,n,r = volume.shape
    x,y,z = np.mgrid[0:m,0:n,0:r]
    X = x - roi[0]
    Y = y - roi[1]
    Z = z - roi[2]
    return ne.evaluate('X**2 + Y**2 + Z**2 < radius**2')

def vectorized_app2(volume, roi, radius):
    m,n,r = volume.shape
    vals = ((np.arange(m)-roi[0])**2)[:,None,None] + 
           ((np.arange(n)-roi[1])**2)[:,None] + ((np.arange(r)-roi[2])**2)
    return vals < radius**2

def vectorized_app2_simplified(volume, roi, radius):
    m,n,r = volume.shape    
    x,y,z = np.ogrid[0:m,0:n,0:r]-roi
    return (x**2+y**2+z**2) < radius**2

Timings -

In [106]: # Setup input arrays  
     ...: volume = np.random.rand(90,110,100) # Half of original input sizes 
     ...: roi = np.random.rand(3)
     ...: radius = 3.4
     ...: 

In [107]: %timeit _make_mask(volume, roi, radius)
1 loops, best of 3: 41.4 s per loop

In [108]: %timeit vectorized_app1(volume, roi, radius)
10 loops, best of 3: 62.3 ms per loop

In [109]: %timeit vectorized_app1_improved(volume, roi, radius)
10 loops, best of 3: 47 ms per loop

In [110]: %timeit vectorized_app2(volume, roi, radius)
100 loops, best of 3: 4.26 ms per loop

In [139]: %timeit vectorized_app2_simplified(volume, roi, radius)
100 loops, best of 3: 4.36 ms per loop

So, as always broadcasting showing its magic for a crazy almost 10,000x speedup over the original code and more than 10x better than creating meshes by using on-the-fly broadcasted operations!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...