You can pass a list of row numbers to skiprows
instead of an integer.
By giving the function the integer 10, you're just skipping the first 10 lines.
To keep the first row 0 (as the header) and then skip everything else up to row 10, you can write:
pd.read_csv('test.csv', sep='|', skiprows=range(1, 10))
Other ways to skip rows using read_csv
The two main ways to control which rows read_csv
uses are the header
or skiprows
parameters.
Supose we have the following CSV file with one column:
a
b
c
d
e
f
In each of the examples below, this file is f = io.StringIO("
".join("abcdef"))
.
Read all lines as values (no header, defaults to integers)
>>> pd.read_csv(f, header=None)
0
0 a
1 b
2 c
3 d
4 e
5 f
Use a particular row as the header (skip all lines before that):
>>> pd.read_csv(f, header=3)
d
0 e
1 f
Use a multiple rows as the header creating a MultiIndex (skip all lines before the last specified header line):
>>> pd.read_csv(f, header=[2, 4])
c
e
0 f
Skip N rows from the start of the file (the first row that's not skipped is the header):
>>> pd.read_csv(f, skiprows=3)
d
0 e
1 f
Skip one or more rows by giving the row indices (the first row that's not skipped is the header):
>>> pd.read_csv(f, skiprows=[2, 4])
a
0 b
1 d
2 f
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…