I'm developing a cross-platform game which plays over a network using a lockstep model. As a brief overview, this means that only inputs are communicated, and all game logic is simulated on each client's computer. Therefore, consistency and determinism is very important.
I'm compiling the Windows version on MinGW32, which uses GCC 4.8.1, and on Linux I'm compiling using GCC 4.8.2.
What struck me recently was that, when my Linux version connected to my Windows version, the program would diverge, or de-sync, instantly, even though the same code was compiled on both machines! Turns out the problem was that the Linux build was being compiled via 64 bit, whereas the Windows version was 32 bit.
After compiling a Linux 32 bit version, I was thankfully relieved that the problem was resolved. However, it got me thinking and researching on floating point determinism.
This is what I've gathered:
A program will be generally consistent if it's:
- ran on the same architecture
- compiled using the same compiler
So if I assume, targeting a PC market, that everyone has a x86 processor, then that solves requirement one. However, the second requirement seems a little silly.
MinGW, GCC, and Clang (Windows, Linux, Mac, respectively) are all different compilers based/compatible with/on GCC. Does this mean it's impossible to achieve cross-platform determinism? or is it only applicable to Visual C++ vs GCC?
As well, do the optimization flags -O1 or -O2 affect this determinism? Would it be safer to leave them off?
In the end, I have three questions to ask:
- 1) Is cross-platform determinism possible when using MinGW, GCC, and Clang for compilers?
- 2) What flags should be set across these compilers to ensure the most consistency between operating systems / CPUs?
- 3) Floating point accuracy isn't that important for me -- what's important is that they are consistent. Is there any method to reducing floating point numbers to a lower precision (like 3-4 decimal places) to ensure that the little rounding errors across systems become non-existent? (Every implementation I've tried to write so far has failed)
Edit: I've done some cross-platform experiments.
Using floatation points for velocity and position, I kept a Linux Intel Laptop and a Windows AMD Desktop computer in sync for up to 15 decimal places of the float values. Both systems are, however, x86_64. The test was simple though -- it was just moving entities around over a network, trying to determine any visible error.
Would it make sense to assume that the same results would hold if a x86 computer were to connect to a x86_64 computer? (32 bit vs 64 bit Operating System)
See Question&Answers more detail:
os