This is a classical interview question, and is usually presented like this:
Devise a stack-like data structure that does push, pop and min (or max) operations in O(1) time. There are no space constraints.
The answer is, you use two stacks: the main stack, and a min (or max) stack.
So for example, after pushing 1,2,3,4,5 onto the stack, your stacks would look like this:
MAIN MIN
+---+ +---+
| 5 | | 1 |
| 4 | | 1 |
| 3 | | 1 |
| 2 | | 1 |
| 1 | | 1 |
+---+ +---+
However, if you were to push 5,4,3,2,1, the stacks would look like this:
MAIN MIN
+---+ +---+
| 1 | | 1 |
| 2 | | 2 |
| 3 | | 3 |
| 4 | | 4 |
| 5 | | 5 |
+---+ +---+
For 5,2,4,3,1 you would have:
MAIN MIN
+---+ +---+
| 1 | | 1 |
| 3 | | 2 |
| 4 | | 2 |
| 2 | | 2 |
| 5 | | 5 |
+---+ +---+
and so on.
You can also save some space by pushing to the min stack only when the minimum element changes, iff the items are known to be distinct.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…