Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
593 views
in Technique[技术] by (71.8m points)

python - Compute pairwise distance in a batch without replicating tensor in Tensorflow?

I want to compute the pairwise square distance of a batch of feature in Tensorflow. I have a simple implementation using + and * operations by tiling the original tensor :

def pairwise_l2_norm2(x, y, scope=None):
    with tf.op_scope([x, y], scope, 'pairwise_l2_norm2'):
        size_x = tf.shape(x)[0]
        size_y = tf.shape(y)[0]
        xx = tf.expand_dims(x, -1)
        xx = tf.tile(xx, tf.pack([1, 1, size_y]))

        yy = tf.expand_dims(y, -1)
        yy = tf.tile(yy, tf.pack([1, 1, size_x]))
        yy = tf.transpose(yy, perm=[2, 1, 0])

        diff = tf.sub(xx, yy)
        square_diff = tf.square(diff)

        square_dist = tf.reduce_sum(square_diff, 1)

        return square_dist

This function takes as input two matrices of size (m,d) and (n,d) and compute the squared distance between each row vector. The output is a matrix of size (m,n) with element 'd_ij = dist(x_i, y_j)'.

The problem is that I have a large batch and high dim features 'm, n, d' replicating the tensor consume a lot of memory. I'm looking for another way to implement this without increasing the memory usage and just only store the final distance tensor. Kind of double looping the original tensor.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can use some linear algebra to turn it into matrix ops. Note that what you need matrix D where a[i] is the ith row of your original matrix and

D[i,j] = (a[i]-a[j])(a[i]-a[j])'

You can rewrite that into

D[i,j] = r[i] - 2 a[i]a[j]' + r[j]

Where r[i] is squared norm of ith row of the original matrix.

In a system that supports standard broadcasting rules you can treat r as a column vector and write D as

D = r - 2 A A' + r'

In TensorFlow you could write this as

A = tf.constant([[1, 1], [2, 2], [3, 3]])
r = tf.reduce_sum(A*A, 1)

# turn r into column vector
r = tf.reshape(r, [-1, 1])
D = r - 2*tf.matmul(A, tf.transpose(A)) + tf.transpose(r)
sess = tf.Session()
sess.run(D)

result

array([[0, 2, 8],
       [2, 0, 2],
       [8, 2, 0]], dtype=int32)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...