Check out the tf.data.Dataset
API. There are a number of ways to create a dataset. I'll outline four - but you'll only have to implement one.
I assume each row of your csv
files is n_features
float values followed by a single int
value.
Creating a tf.data.Dataset
Wrap a python generator with Dataset.from_generator
The easiest way to get started is to wrap a native python generator. This can have performance issues, but may be fine for your purposes.
def read_csv(filename):
with open(filename, 'r') as f:
for line in f.readlines():
record = line.rstrip().split(',')
features = [float(n) for n in record[:-1]]
label = int(record[-1])
yield features, label
def get_dataset():
filename = 'my_train_dataset.csv'
generator = lambda: read_csv(filename)
return tf.data.Dataset.from_generator(
generator, (tf.float32, tf.int32), ((n_features,), ()))
This approach is highly versatile and allows you to test your generator function (read_csv
) independently of TensorFlow.
Supporting tensorflow versions 1.12+, tensorflow datasets is my new favourite way of creating datasets. It automatically serializes your data, collects statistics and makes other meta-data available to you via info
and builder
objects. It can also handle automatic downloading and extracting making collaboration simple.
import tensorflow_datasets as tfds
class MyCsvDatasetBuilder(tfds.core.GeneratorBasedBuilder):
VERSION = tfds.core.Version("0.0.1")
def _info(self):
return tfds.core.DatasetInfo(
builder=self,
description=(
"My dataset"),
features=tfds.features.FeaturesDict({
"features": tfds.features.Tensor(
shape=(FEATURE_SIZE,), dtype=tf.float32),
"label": tfds.features.ClassLabel(
names=CLASS_NAMES),
"index": tfds.features.Tensor(shape=(), dtype=tf.float32)
}),
supervised_keys=("features", "label"),
)
def _split_generators(self, dl_manager):
paths = dict(
train='/path/to/train.csv',
test='/path/to/test.csv',
)
# better yet, if the csv files were originally downloaded, use
# urls = dict(train=train_url, test=test_url)
# paths = dl_manager.download(urls)
return [
tfds.core.SplitGenerator(
name=tfds.Split.TRAIN,
num_shards=10,
gen_kwargs=dict(path=paths['train'])),
tfds.core.SplitGenerator(
name=tfds.Split.TEST,
num_shards=2,
gen_kwargs=dict(cvs_path=paths['test']))
]
def _generate_examples(self, csv_path):
with open(csv_path, 'r') as f:
for i, line in enumerate(f.readlines()):
record = line.rstrip().split(',')
features = [float(n) for n in record[:-1]]
label = int(record[-1])
yield dict(features=features, label=label, index=i)
Usage:
builder = MyCsvDatasetBuilder()
builder.download_and_prepare() # will only take time to run first time
# as_supervised makes output (features, label) - good for model.fit
datasets = builder.as_dataset(as_supervised=True)
train_ds = datasets['train']
test_ds = datasets['test']
Wrap an index-based python function
One of the downsides of the above is shuffling the resulting dataset with a shuffle buffer of size n
requires n
examples to be loaded. This will either create periodic pauses in your pipeline (large n
) or result in potentially poor shuffling (small n
).
def get_record(i):
# load the ith record using standard python, return numpy arrays
return features, labels
def get_inputs(batch_size, is_training):
def tf_map_fn(index):
features, labels = tf.py_func(
get_record, (index,), (tf.float32, tf.int32), stateful=False)
features.set_shape((n_features,))
labels.set_shape(())
# do data augmentation here
return features, labels
epoch_size = get_epoch_size()
dataset = tf.data.Dataset.from_tensor_slices((tf.range(epoch_size,))
if is_training:
dataset = dataset.repeat().shuffle(epoch_size)
dataset = dataset.map(tf_map_fn, (tf.float32, tf.int32), num_parallel_calls=8)
dataset = dataset.batch(batch_size)
# prefetch data to CPU while GPU processes previous batch
dataset = dataset.prefetch(1)
# Also possible
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
features, labels = dataset.make_one_shot_iterator().get_next()
return features, labels
In short, we create a dataset just of the record indices (or any small record ID which we can load entirely into memory). We then do shuffling/repeating operations on this minimal dataset, then map
the index to the actual data via tf.data.Dataset.map
and tf.py_func
. See the Using with Estimators
and Testing in isolation
sections below for usage. Note this requires your data to be accessible by row, so you may need to convert from csv
to some other format.
TextLineDataset
You can also read the csv
file directly using a tf.data.TextLineDataset
.
def get_record_defaults():
zf = tf.zeros(shape=(1,), dtype=tf.float32)
zi = tf.ones(shape=(1,), dtype=tf.int32)
return [zf]*n_features + [zi]
def parse_row(tf_string):
data = tf.decode_csv(
tf.expand_dims(tf_string, axis=0), get_record_defaults())
features = data[:-1]
features = tf.stack(features, axis=-1)
label = data[-1]
features = tf.squeeze(features, axis=0)
label = tf.squeeze(label, axis=0)
return features, label
def get_dataset():
dataset = tf.data.TextLineDataset(['data.csv'])
return dataset.map(parse_row, num_parallel_calls=8)
The parse_row
function is a little convoluted since tf.decode_csv
expects a batch. You can make it slightly simpler if you batch the dataset before parsing.
def parse_batch(tf_string):
data = tf.decode_csv(tf_string, get_record_defaults())
features = data[:-1]
labels = data[-1]
features = tf.stack(features, axis=-1)
return features, labels
def get_batched_dataset(batch_size):
dataset = tf.data.TextLineDataset(['data.csv'])
dataset = dataset.batch(batch_size)
dataset = dataset.map(parse_batch)
return dataset
TFRecordDataset
Alternatively you can convert the csv
files to TFRecord files and use a TFRecordDataset. There's a thorough tutorial here.
Step 1: Convert the csv
data to TFRecords data. Example code below (see read_csv
from from_generator
example above).
with tf.python_io.TFRecordWriter("my_train_dataset.tfrecords") as writer:
for features, labels in read_csv('my_train_dataset.csv'):
example = tf.train.Example()
example.features.feature[
"features"].float_list.value.extend(features)
example.features.feature[
"label"].int64_list.value.append(label)
writer.write(example.SerializeToString())
This only needs to be run once.
Step 2: Write a dataset that decodes these record files.
def parse_function(example_proto):
features = {
'features': tf.FixedLenFeature((n_features,), tf.float32),
'label': tf.FixedLenFeature((), tf.int64)
}
parsed_features = tf.parse_single_example(example_proto, features)
return parsed_features['features'], parsed_features['label']
def get_dataset():
dataset = tf.data.TFRecordDataset(['data.tfrecords'])
dataset = dataset.map(parse_function)
return dataset
Using the dataset with estimators
def get_inputs(batch_size, shuffle_size):
dataset = get_dataset() # one of the above implementations
dataset = dataset.shuffle(shuffle_size)
dataset = dataset.repeat() # repeat indefinitely
dataset = dataset.batch(batch_size)
# prefetch data to CPU while GPU processes previous batch
dataset = dataset.prefetch(1)
# Also possible
# dataset = dataset.apply(
# tf.contrib.data.prefetch_to_device('/gpu:0'))
features, label = dataset.make_one_shot_iterator().get_next()
estimator.train(lambda: get_inputs(32, 1000), max_steps=1e7)
Testing the dataset in isolation
I'd strongly encourage you to test your dataset independently of your estimator. Using the above get_inputs
, it should be as simple as
batch_size = 4
shuffle_size = 100
features, labels = get_inputs(batch_size, shuffle_size)
with tf.Session() as sess:
f_data, l_data = sess.run([features, labels])
print(f_data, l_data) # or some better visualization function
Performance
Assuming your using a GPU to run your network, unless each row of your csv
file is enormous and your network is tiny you probably won't notice a difference in performance. This is because the Estimator
implementation forces data loading/preprocessing to be performed on the CPU, and prefetch
means the next batch can be prepared on the CPU as the current batch is training on the GPU. The only exception to this is if you have a massive shuffle size on a dataset with a large amount of data per record, which will take some time to load in a number of examples initially before running anything through the GPU.