I am working with pandas dataframes that are essentially time series like this:
level
Date
1976-01-01 409.67
1976-02-01 409.58
1976-03-01 409.66
…
What I want to have, is multiple indexes/headers for the level column, like so:
Station1 #Name of the datasource
43.1977317,-4.6473648,5 #Lat/Lon of the source
Precip #Type of data
Date
1976-01-01 409.67
1976-02-01 409.58
1976-03-01 409.66
…
So essentially I am searching for something like Mydata.columns.level1 = ['Station1']
, Mydata.columns.level2 = [Lat,Lon]
, Mydata.columns.level3 = ['Precip']
.
Reason being that a single location can have multiple datasets, and that I want to be able to pick either all data from one location, or all data of a certain type from all locations, from a subsequent merged, big dataframe.
I can set up an example dataframe from the pandas documentation, and test my selection, but with my real data, I need a different way to set the indexes as in the example.
Example:
Built a small dataframe
header = [np.array(['location','location','location','location2','location2','location2']),
np.array(['S1','S2','S3','S1','S2','S3'])]
df = pd.DataFrame(np.random.randn(5, 6), index=['a','b','c','d','e'], columns = header )
df
location location2
S1 S2 S3 S1 S2 S3
a -1.469932 -1.544511 -1.373463 -0.317262 0.024832 -0.641000
b 0.047170 -0.339423 1.351253 0.601172 -1.607339 0.035932
c -0.257479 1.140829 0.188291 -0.242490 1.019315 -1.163429
d 0.832949 0.098170 -0.818513 -0.070383 0.557419 -0.489839
e -0.628549 -0.158419 0.366167 -2.319316 -0.474897 -0.319549
Pick datatype or location:
df.loc(axis=1)[:,'S1']
location location2
S1 S1
a -1.469932 -0.317262
b 0.047170 0.601172
c -0.257479 -0.242490
d 0.832949 -0.070383
e -0.628549 -2.319316
df['location']
S1 S2 S3
a -1.469932 -1.544511 -1.373463
b 0.047170 -0.339423 1.351253
c -0.257479 1.140829 0.188291
d 0.832949 0.098170 -0.818513
e -0.628549 -0.158419 0.366167
Or am I just looking for the wrong terminology? Because 90% of all examples in the documentation, and the questions here only treat the vertical "stuff" (dates or abcde in my case) as index, and a quick df.index.values
on my test data also just gets me the vertical array(['a', 'b', 'c', 'd', 'e'], dtype=object)
.
See Question&Answers more detail:
os