Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
472 views
in Technique[技术] by (71.8m points)

c# - Why is a round-trip conversion via a string not safe for a double?

Recently I have had to serialize a double into text, and then get it back. The value seems to not be equivalent:

double d1 = 0.84551240822557006;
string s = d1.ToString("R");
double d2 = double.Parse(s);
bool s1 = d1 == d2;
// -> s1 is False

But according to MSDN: Standard Numeric Format Strings, the "R" option is supposed to guarantee round-trip safety.

The round-trip ("R") format specifier is used to ensure that a numeric value that is converted to a string will be parsed back into the same numeric value

Why did this happen?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I found the bug.

.NET does the following in clrsrcvmcomnumber.cpp:

DoubleToNumber(value, DOUBLE_PRECISION, &number);

if (number.scale == (int) SCALE_NAN) {
    gc.refRetVal = gc.numfmt->sNaN;
    goto lExit;
}

if (number.scale == SCALE_INF) {
    gc.refRetVal = (number.sign? gc.numfmt->sNegativeInfinity: gc.numfmt->sPositiveInfinity);
    goto lExit;
}

NumberToDouble(&number, &dTest);

if (dTest == value) {
    gc.refRetVal = NumberToString(&number, 'G', DOUBLE_PRECISION, gc.numfmt);
    goto lExit;
}

DoubleToNumber(value, 17, &number);

DoubleToNumber is pretty simple -- it just calls _ecvt, which is in the C runtime:

void DoubleToNumber(double value, int precision, NUMBER* number)
{
    WRAPPER_CONTRACT
    _ASSERTE(number != NULL);

    number->precision = precision;
    if (((FPDOUBLE*)&value)->exp == 0x7FF) {
        number->scale = (((FPDOUBLE*)&value)->mantLo || ((FPDOUBLE*)&value)->mantHi) ? SCALE_NAN: SCALE_INF;
        number->sign = ((FPDOUBLE*)&value)->sign;
        number->digits[0] = 0;
    }
    else {
        char* src = _ecvt(value, precision, &number->scale, &number->sign);
        wchar* dst = number->digits;
        if (*src != '0') {
            while (*src) *dst++ = *src++;
        }
        *dst = 0;
    }
}

It turns out that _ecvt returns the string 845512408225570.

Notice the trailing zero? It turns out that makes all the difference!
When the zero is present, the result actually parses back to 0.84551240822557006, which is your original number -- so it compares equal, and hence only 15 digits are returned.

However, if I truncate the string at that zero to 84551240822557, then I get back 0.84551240822556994, which is not your original number, and hence it would return 17 digits.

Proof: run the following 64-bit code (most of which I extracted from the Microsoft Shared Source CLI 2.0) in your debugger and examine v at the end of main:

#include <stdlib.h>
#include <string.h>
#include <math.h>

#define min(a, b) (((a) < (b)) ? (a) : (b))

struct NUMBER {
    int precision;
    int scale;
    int sign;
    wchar_t digits[20 + 1];
    NUMBER() : precision(0), scale(0), sign(0) {}
};


#define I64(x) x##LL
static const unsigned long long rgval64Power10[] = {
    // powers of 10
    /*1*/ I64(0xa000000000000000),
    /*2*/ I64(0xc800000000000000),
    /*3*/ I64(0xfa00000000000000),
    /*4*/ I64(0x9c40000000000000),
    /*5*/ I64(0xc350000000000000),
    /*6*/ I64(0xf424000000000000),
    /*7*/ I64(0x9896800000000000),
    /*8*/ I64(0xbebc200000000000),
    /*9*/ I64(0xee6b280000000000),
    /*10*/ I64(0x9502f90000000000),
    /*11*/ I64(0xba43b74000000000),
    /*12*/ I64(0xe8d4a51000000000),
    /*13*/ I64(0x9184e72a00000000),
    /*14*/ I64(0xb5e620f480000000),
    /*15*/ I64(0xe35fa931a0000000),

    // powers of 0.1
    /*1*/ I64(0xcccccccccccccccd),
    /*2*/ I64(0xa3d70a3d70a3d70b),
    /*3*/ I64(0x83126e978d4fdf3c),
    /*4*/ I64(0xd1b71758e219652e),
    /*5*/ I64(0xa7c5ac471b478425),
    /*6*/ I64(0x8637bd05af6c69b7),
    /*7*/ I64(0xd6bf94d5e57a42be),
    /*8*/ I64(0xabcc77118461ceff),
    /*9*/ I64(0x89705f4136b4a599),
    /*10*/ I64(0xdbe6fecebdedd5c2),
    /*11*/ I64(0xafebff0bcb24ab02),
    /*12*/ I64(0x8cbccc096f5088cf),
    /*13*/ I64(0xe12e13424bb40e18),
    /*14*/ I64(0xb424dc35095cd813),
    /*15*/ I64(0x901d7cf73ab0acdc),
};

static const signed char rgexp64Power10[] = {
    // exponents for both powers of 10 and 0.1
    /*1*/ 4,
    /*2*/ 7,
    /*3*/ 10,
    /*4*/ 14,
    /*5*/ 17,
    /*6*/ 20,
    /*7*/ 24,
    /*8*/ 27,
    /*9*/ 30,
    /*10*/ 34,
    /*11*/ 37,
    /*12*/ 40,
    /*13*/ 44,
    /*14*/ 47,
    /*15*/ 50,
};

static const unsigned long long rgval64Power10By16[] = {
    // powers of 10^16
    /*1*/ I64(0x8e1bc9bf04000000),
    /*2*/ I64(0x9dc5ada82b70b59e),
    /*3*/ I64(0xaf298d050e4395d6),
    /*4*/ I64(0xc2781f49ffcfa6d4),
    /*5*/ I64(0xd7e77a8f87daf7fa),
    /*6*/ I64(0xefb3ab16c59b14a0),
    /*7*/ I64(0x850fadc09923329c),
    /*8*/ I64(0x93ba47c980e98cde),
    /*9*/ I64(0xa402b9c5a8d3a6e6),
    /*10*/ I64(0xb616a12b7fe617a8),
    /*11*/ I64(0xca28a291859bbf90),
    /*12*/ I64(0xe070f78d39275566),
    /*13*/ I64(0xf92e0c3537826140),
    /*14*/ I64(0x8a5296ffe33cc92c),
    /*15*/ I64(0x9991a6f3d6bf1762),
    /*16*/ I64(0xaa7eebfb9df9de8a),
    /*17*/ I64(0xbd49d14aa79dbc7e),
    /*18*/ I64(0xd226fc195c6a2f88),
    /*19*/ I64(0xe950df20247c83f8),
    /*20*/ I64(0x81842f29f2cce373),
    /*21*/ I64(0x8fcac257558ee4e2),

    // powers of 0.1^16
    /*1*/ I64(0xe69594bec44de160),
    /*2*/ I64(0xcfb11ead453994c3),
    /*3*/ I64(0xbb127c53b17ec165),
    /*4*/ I64(0xa87fea27a539e9b3),
    /*5*/ I64(0x97c560ba6b0919b5),
    /*6*/ I64(0x88b402f7fd7553ab),
    /*7*/ I64(0xf64335bcf065d3a0),
    /*8*/ I64(0xddd0467c64bce4c4),
    /*9*/ I64(0xc7caba6e7c5382ed),
    /*10*/ I64(0xb3f4e093db73a0b7),
    /*11*/ I64(0xa21727db38cb0053),
    /*12*/ I64(0x91ff83775423cc29),
    /*13*/ I64(0x8380dea93da4bc82),
    /*14*/ I64(0xece53cec4a314f00),
    /*15*/ I64(0xd5605fcdcf32e217),
    /*16*/ I64(0xc0314325637a1978),
    /*17*/ I64(0xad1c8eab5ee43ba2),
    /*18*/ I64(0x9becce62836ac5b0),
    /*19*/ I64(0x8c71dcd9ba0b495c),
    /*20*/ I64(0xfd00b89747823938),
    /*21*/ I64(0xe3e27a444d8d991a),
};

static const signed short rgexp64Power10By16[] = {
    // exponents for both powers of 10^16 and 0.1^16
    /*1*/ 54,
    /*2*/ 107,
    /*3*/ 160,
    /*4*/ 213,
    /*5*/ 266,
    /*6*/ 319,
    /*7*/ 373,
    /*8*/ 426,
    /*9*/ 479,
    /*10*/ 532,
    /*11*/ 585,
    /*12*/ 638,
    /*13*/ 691,
    /*14*/ 745,
    /*15*/ 798,
    /*16*/ 851,
    /*17*/ 904,
    /*18*/ 957,
    /*19*/ 1010,
    /*20*/ 1064,
    /*21*/ 1117,
};

static unsigned DigitsToInt(wchar_t* p, int count)
{
    wchar_t* end = p + count;
    unsigned res = *p - '0';
    for ( p = p + 1; p < end; p++) {
        res = 10 * res + *p - '0';
    }
    return res;
}
#define Mul32x32To64(a, b) ((unsigned long long)((unsigned long)(a)) * (unsigned long long)((unsigned long)(b)))

static unsigned long long Mul64Lossy(unsigned long long a, unsigned long long b, int* pexp)
{
    // it's ok to losse some precision here - Mul64 will be called
    // at most twice during the conversion, so the error won't propagate
    // to any of the 53 significant bits of the result
    unsigned long long val = Mul32x32To64(a >> 32, b >> 32) +
        (Mul32x32To64(a >> 32, b) >> 32) +
        (Mul32x32To64(a, b >> 32) >> 32);

    // normalize
    if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; *pexp -= 1; }

    return val;
}

void NumberToDouble(NUMBER* number, double* value)
{
    unsigned long long val;
    int exp;
    wchar_t* src = number->digits;
    int remaining;
    int total;
    int count;
    int scale;
    int absscale;
    int index;

    total = (int)wcslen(src);
    remaining = total;

    // skip the leading zeros
    while (*src == '0') {
        remaining--;
        src++;
    }

    if (remaining == 0) {
        *value = 0;
        goto done;
    }

    count = min(remaining, 9);
    remaining -= count;
    val = DigitsToInt(src, count);

    if (remaining > 0) {
        count = min(remaining, 9);
        remaining -= count;

        // get the denormalized power of 10
        unsigned long mult = (unsigned long)(rgval64Power10[count-1] >> (64 - rgexp64Power10[count-1]));
        val = Mul32x32To64(val, mult) + DigitsToInt(src+9, count);
    }

    scale = number->scale - (total - remaining);
    absscale = abs(scale);
    if (absscale >= 22 * 16) {
        // overflow / underflow
        *(unsigned long long*)value = (scale > 0) ? I64(0x7FF0000000000000) : 0;
        goto done;
    }

    exp = 64;

    // normalize the mantisa
    if ((val & I64(0xFFFFFFFF00000000)) == 0) { val <<= 32; exp -= 32; }
    if ((val & I64(0xFFFF000000000000)) == 0) { val <<= 16; exp -= 16; }
    if ((val & I64(0xFF00000000000000)) == 0) { val <<= 8; exp -= 8; }
    if ((val & I64(0xF000000000000000)) == 0) { val <<= 4; exp -= 4; }
    if ((val & I64(0xC000000000000000)) == 0) { val <<= 2; exp -= 2; }
    if ((val & I64(0x8000000000000000)) == 0) { val <<= 1; exp -= 1; }

    index = absscale & 15;
    if (index) {
        int multexp = rgexp64Power10[index-1];
        // the exponents are shared between the inverted and regular table
        exp += (scale < 0) ? (-multexp + 1) : multexp;

        unsigned long long multval = rgval64Power10[index + ((scale < 0) ? 15 : 0) - 1];
        val = Mul64Lossy(val, multval, &exp);
    }

    index = absscale >> 4;
    if (index) {
        int multexp = rgexp64Power10By16[index-1];
        // the exponents are shared between the inverted and regular table
        exp += (scale < 0) ? (-multexp + 1) : multexp;

        unsigned long long multval = rgval64Power10By16[index + ((scale < 0) ? 21 : 0) - 1];
        val = Mul64Lossy(val, multval, &exp);
    }

    // round & scale down
    if ((unsigned long)val & (1 << 10))
    {
        // IEEE round to even
        unsigned long long tmp = val + ((1 << 10) - 1) + (((unsigned long)val >> 11) & 1);
        if (tmp < val) {
            // overflow
            tmp = (tmp >> 1) | I64(0x8000000000000000);
            exp += 1;
        }
        val = tmp;
    }
    val >>= 11;

    exp += 0x3FE;

    if (exp <= 0) {
        if (exp <= -52) {
            // underflow
            val = 0;
        }
        else {
            // denormalized
            val >>= (-exp+1);
        }
    }
    else
        if (exp >= 0x7FF) {
            // overflow
            val = I64(0x7FF0000000000000);
        }
        else {
            val = ((unsigned long long)exp << 52) + (val & I64(0x000FFFFFFFFFFFFF));
        }

        *(unsigned long long*)value = val;

done:
        if (number->sign) *(unsigned long long*)value |= I64(0x8000000000000000);
}

int main()
{
    NUMBER number;
    number.precision = 15;
    double v = 0.84551240822557006;
    char *src = _ecvt(v, number.precision, &number.scale, &number.sign);
    int truncate = 0;  // change to 1 if you want to truncate
    if (truncate)
    {
        while (*src && src[strlen(src) - 1] == '0')
        {
            src[strlen(src) - 1] = 0;
        }
    }
    wchar_t* dst = number.digits;
    if (*src != '0') {
        while (*src) *dst++ = *src++;
    }
    *dst++ = 0;
    NumberToDouble(&number, &v);
    return 0;
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...