I have the following code which attempts to minimize a log likelihood function.
#!/usr/bin/python
import math
import random
import numpy as np
from scipy.optimize import minimize
def loglikelihood(params, data):
(mu, alpha, beta) = params
tlist = np.array(data)
r = np.zeros(len(tlist))
for i in xrange(1,len(tlist)):
r[i] = math.exp(-beta*(tlist[i]-tlist[i-1]))*(1+r[i-1])
loglik = -tlist[-1]*mu
loglik = loglik+alpha/beta*sum(np.exp(-beta*(tlist[-1]-tlist))-1)
loglik = loglik+np.sum(np.log(mu+alpha*r))
return -loglik
atimes = [ 148.98894201, 149.70253172, 151.13717804, 160.35968355,
160.98322609, 161.21331798, 163.60755544, 163.68994973,
164.26131871, 228.79436067]
a= 0.01
alpha = 0.5
beta = 0.6
print loglikelihood((a, alpha, beta), atimes)
res = minimize(loglikelihood, (0.01, 0.1,0.1), method = 'BFGS',args = (atimes,))
print res
It gives me
28.3136498357
./test.py:17: RuntimeWarning: invalid value encountered in log
loglik = loglik+np.sum(np.log(mu+alpha*r))
status: 2
success: False
njev: 14
nfev: 72
hess_inv: array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
fun: 32.131359359964378
x: array([ 0.01, 0.1 , 0.1 ])
message: 'Desired error not necessarily achieved due to precision loss.'
jac: array([ -2.8051672 , 13.06962156, -48.97879982])
Notice that it hasn't managed to optimize the parameters at all and the minimized value 32 is bigger than 28 which is what you get with a= 0.01, alpha = 0.5, beta = 0.6 . It's possible this problem could be avoided by choosing better initial guesses but if so, how can I do this automatically?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…