Looks like you want to use the Series.shift
method.
Using this method, you can generate new columns which are offset to the original columns. Like this:
df['qty_s'] = df['qty'].shift(-1)
df['t_s'] = df['t'].shift(-1)
df['z_s'] = df['z'].shift(-1)
Now you can compare these:
df['is_something'] = (df['qty'] == df['qty_s']) & (df['t'] < df['t_s']) & (df['z'] == df['z_s'])
Here is a simplified example of how Series.shift
works to compare next row to the current:
df = pd.DataFrame({"temp_celcius":pd.np.random.choice(10, 10) + 20}, index=pd.date_range("2015-05-15", "2015-05-24"))
df
temp_celcius
2015-05-15 21
2015-05-16 28
2015-05-17 27
2015-05-18 21
2015-05-19 25
2015-05-20 28
2015-05-21 25
2015-05-22 22
2015-05-23 29
2015-05-24 25
df["temp_c_yesterday"] = df["temp_celcius"].shift(1)
df
temp_celcius temp_c_yesterday
2015-05-15 21 NaN
2015-05-16 28 21
2015-05-17 27 28
2015-05-18 21 27
2015-05-19 25 21
2015-05-20 28 25
2015-05-21 25 28
2015-05-22 22 25
2015-05-23 29 22
2015-05-24 25 29
df["warmer_than_yesterday"] = df["temp_celcius"] > df["temp_c_yesterday"]
temp_celcius temp_c_yesterday warmer_than_yesterday
2015-05-15 21 NaN False
2015-05-16 28 21 True
2015-05-17 27 28 False
2015-05-18 21 27 False
2015-05-19 25 21 True
2015-05-20 28 25 True
2015-05-21 25 28 False
2015-05-22 22 25 False
2015-05-23 29 22 True
2015-05-24 25 29 False
If I misunderstood your query, please post a comment and I'll update my answer.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…