Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
371 views
in Technique[技术] by (71.8m points)

python - Deal with overflow in exp using numpy

Using numpy, I have this definition of a function:

def powellBadlyScaled(X):
    f1 = 10**4 * X[0] * X[1] - 1
    f2 = numpy.exp(-numpy.float(X[0])) + numpy.exp(-numpy.float(X[1])) - 1.0001
    return f1 + f2

This function is evaluated a huge number of times on an optimization routine. It often raises exception:

RuntimeWarning: overflow encountered in exp

I understand that operand cannot be stored in allocated space for a float. But how can I overcome the problem?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can use the bigfloat package. It supports arbitrary precision floating point operations.

http://packages.python.org/bigfloat/

import bigfloat
bigfloat.exp(5000,bigfloat.precision(100))
# -> BigFloat.exact('2.9676283840236670689662968052896e+2171', precision=100)

Are you using a function optimization framework? They usually implement value boundaries (using penalty terms). Try that. Are the relevant values really that extreme? In optimization it's not uncommon to minimize log(f). (approximate log likelihood etc etc). Are you sure you want to optimize on that exp value and not log(exp(f)) == f. ?

Have a look at my answer to this question: logit and inverse logit functions for extreme values

Btw, if all you do is minimize powellBadlyScaled(x,y) then the minimum is at x -> + inf and y -> + inf, so no need for numerics.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...