Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
321 views
in Technique[技术] by (71.8m points)

Python list comprehension expensive

Im trying to find the effeciency of list comprehension but it look like its more expensive than a normal function operation. Can someone explain?

def squares(values):
    lst = []
    for x in range(values):
        lst.append(x*x)
    return lst

def main():
    t = timeit.Timer(stmt="lst = [x*x for x in range(10)]")
    print t.timeit()
    t = timeit.Timer(stmt="squares",setup="from __main__ import squares")
    print t.timeit()

    lst = [x*x for x in range(10)]
    print lst
    print squares(10)



----Output:---
2.4147507644
0.0284455255965
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

For the same output, the normal function calculates in very less time compared to the list comprehension.

I thought the list comprehension is more effecient.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You are never calling your squares function, so it is not doing anything.

List comprehensions are in fact faster:

>>> import timeit
>>> def squares(values):
...     lst = []
...     for x in range(values):
...         lst.append(x*x)
...     return lst
... 
>>> def squares_comp(values):
...     return [x*x for x in range(values)]
... 
>>> timeit.timeit('f(10)', 'from __main__ import squares as f')
3.9415171146392822
>>> timeit.timeit('f(10)', 'from __main__ import squares_comp as f')
2.3243820667266846

If you use the dis module to look at the bytecode for each function, you can see why:

>>> import dis
>>> dis.dis(squares)
  2           0 BUILD_LIST               0
              3 STORE_FAST               1 (lst)

  3           6 SETUP_LOOP              37 (to 46)
              9 LOAD_GLOBAL              0 (range)
             12 LOAD_FAST                0 (values)
             15 CALL_FUNCTION            1
             18 GET_ITER            
        >>   19 FOR_ITER                23 (to 45)
             22 STORE_FAST               2 (x)

  4          25 LOAD_FAST                1 (lst)
             28 LOAD_ATTR                1 (append)
             31 LOAD_FAST                2 (x)
             34 LOAD_FAST                2 (x)
             37 BINARY_MULTIPLY     
             38 CALL_FUNCTION            1
             41 POP_TOP             
             42 JUMP_ABSOLUTE           19
        >>   45 POP_BLOCK           

  5     >>   46 LOAD_FAST                1 (lst)
             49 RETURN_VALUE        
>>> dis.dis(squares_comp)
  2           0 BUILD_LIST               0
              3 LOAD_GLOBAL              0 (range)
              6 LOAD_FAST                0 (values)
              9 CALL_FUNCTION            1
             12 GET_ITER            
        >>   13 FOR_ITER                16 (to 32)
             16 STORE_FAST               1 (x)
             19 LOAD_FAST                1 (x)
             22 LOAD_FAST                1 (x)
             25 BINARY_MULTIPLY     
             26 LIST_APPEND              2
             29 JUMP_ABSOLUTE           13
        >>   32 RETURN_VALUE        

The squares function looks up the .append() method of the list in each iteration, and calls it. The .append() function has to grow the list by one element each time it is called.

The list comprehension on the other hand doesn't have to do that work. Instead, python uses the LIST_APPEND bytecode, which uses the C API to append a new element to the list, without having to do the lookup and a python call to the function.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...