The scipy documentation does not have anything to say about how one can take the coefficients and manually generate the spline curve. However, it is possible to figure out how to do this from the existing literature on B-splines. The following function bspleval
shows how to construct the B-spline basis functions (the matrix B
in the code), from which one can easily generate the spline curve by multiplying the coefficients with the highest-order basis functions and summing:
def bspleval(x, knots, coeffs, order, debug=False):
'''
Evaluate a B-spline at a set of points.
Parameters
----------
x : list or ndarray
The set of points at which to evaluate the spline.
knots : list or ndarray
The set of knots used to define the spline.
coeffs : list of ndarray
The set of spline coefficients.
order : int
The order of the spline.
Returns
-------
y : ndarray
The value of the spline at each point in x.
'''
k = order
t = knots
m = alen(t)
npts = alen(x)
B = zeros((m-1,k+1,npts))
if debug:
print('k=%i, m=%i, npts=%i' % (k, m, npts))
print('t=', t)
print('coeffs=', coeffs)
## Create the zero-order B-spline basis functions.
for i in range(m-1):
B[i,0,:] = float64(logical_and(x >= t[i], x < t[i+1]))
if (k == 0):
B[m-2,0,-1] = 1.0
## Next iteratively define the higher-order basis functions, working from lower order to higher.
for j in range(1,k+1):
for i in range(m-j-1):
if (t[i+j] - t[i] == 0.0):
first_term = 0.0
else:
first_term = ((x - t[i]) / (t[i+j] - t[i])) * B[i,j-1,:]
if (t[i+j+1] - t[i+1] == 0.0):
second_term = 0.0
else:
second_term = ((t[i+j+1] - x) / (t[i+j+1] - t[i+1])) * B[i+1,j-1,:]
B[i,j,:] = first_term + second_term
B[m-j-2,j,-1] = 1.0
if debug:
plt.figure()
for i in range(m-1):
plt.plot(x, B[i,k,:])
plt.title('B-spline basis functions')
## Evaluate the spline by multiplying the coefficients with the highest-order basis functions.
y = zeros(npts)
for i in range(m-k-1):
y += coeffs[i] * B[i,k,:]
if debug:
plt.figure()
plt.plot(x, y)
plt.title('spline curve')
plt.show()
return(y)
To give an example of how this can be used with Scipy's existing univariate spline functions, the following is an example script. This takes the input data and uses Scipy's functional and also its object-oriented approach to spline fitting. Taking the coefficients and knot points from either of the two and using these as inputs to our manually-calculated routine bspleval
, we reproduce the same curve that they do. Note that the difference between the manually evaluated curve and Scipy's evaluation method is so small that it is almost certainly floating-point noise.
x = array([-273.0, -176.4, -79.8, 16.9, 113.5, 210.1, 306.8, 403.4, 500.0])
y = array([2.25927498e-53, 2.56028619e-03, 8.64512988e-01, 6.27456769e+00, 1.73894734e+01,
3.29052124e+01, 5.14612316e+01, 7.20531200e+01, 9.40718450e+01])
x_nodes = array([-273.0, -263.5, -234.8, -187.1, -120.3, -34.4, 70.6, 194.6, 337.8, 500.0])
y_nodes = array([2.25927498e-53, 3.83520726e-46, 8.46685318e-11, 6.10568083e-04, 1.82380809e-01,
2.66344008e+00, 1.18164677e+01, 3.01811501e+01, 5.78812583e+01, 9.40718450e+01])
## Now get scipy's spline fit.
k = 3
tck = splrep(x_nodes, y_nodes, k=k, s=0)
knots = tck[0]
coeffs = tck[1]
print('knot points=', knots)
print('coefficients=', coeffs)
## Now try scipy's object-oriented version. The result is exactly the same as "tck": the knots are the
## same and the coeffs are the same, they are just queried in a different way.
uspline = UnivariateSpline(x_nodes, y_nodes, s=0)
uspline_knots = uspline.get_knots()
uspline_coeffs = uspline.get_coeffs()
## Here are scipy's native spline evaluation methods. Again, "ytck" and "y_uspline" are exactly equal.
ytck = splev(x, tck)
y_uspline = uspline(x)
y_knots = uspline(knots)
## Now let's try our manually-calculated evaluation function.
y_eval = bspleval(x, knots, coeffs, k, debug=False)
plt.plot(x, ytck, label='tck')
plt.plot(x, y_uspline, label='uspline')
plt.plot(x, y_eval, label='manual')
## Next plot the knots and nodes.
plt.plot(x_nodes, y_nodes, 'ko', markersize=7, label='input nodes') ## nodes
plt.plot(knots, y_knots, 'mo', markersize=5, label='tck knots') ## knots
plt.xlim((-300.0,530.0))
plt.legend(loc='best', prop={'size':14})
plt.figure()
plt.title('difference')
plt.plot(x, ytck-y_uspline, label='tck-uspl')
plt.plot(x, ytck-y_eval, label='tck-manual')
plt.legend(loc='best', prop={'size':14})
plt.show()