You can use replace
which is a bit faster than ifelse
:
dat <- dat %>% mutate(x = replace(x, x<0, NA))
You can speed it up a bit more by supplying an index to replace
using which
:
dat <- dat %>% mutate(x = replace(x, which(x<0L), NA))
On my machine, this cut the time to a third, see below.
Here's a little comparison of the different answers, which is only indicative of course:
set.seed(24)
dat <- data.frame(x=rnorm(1e6))
system.time(dat %>% mutate(x = replace(x, x<0, NA)))
User System elapsed
0.03 0.00 0.03
system.time(dat %>% mutate(x=ifelse(x<0,NA,x)))
User System elapsed
0.30 0.00 0.29
system.time(setDT(dat)[x<0,x:=NA])
User System elapsed
0.01 0.00 0.02
system.time(dat$x[dat$x<0] <- NA)
User System elapsed
0.03 0.00 0.03
system.time(dat %>% mutate(x = "is.na<-"(x, x < 0)))
User System elapsed
0.05 0.00 0.05
system.time(dat %>% mutate(x = NA ^ (x < 0) * x))
User System elapsed
0.01 0.00 0.02
system.time(dat %>% mutate(x = replace(x, which(x<0), NA)))
User System elapsed
0.01 0.00 0.01
(I'm using dplyr_0.3.0.2 and data.table_1.9.4)
Since we're always very interested in benchmarking, especially in the course of data.table-vs-dplyr discussions I provide another benchmark of 3 of the answers using microbenchmark and the data by akrun. Note that I modified dplyr1
to be the updated version of my answer:
set.seed(285)
dat1 <- dat <- data.frame(x=sample(-5:5, 1e8, replace=TRUE), y=rnorm(1e8))
dtbl1 <- function() {setDT(dat)[x<0,x:=NA]}
dplr1 <- function() {dat1 %>% mutate(x = replace(x, which(x<0L), NA))}
dplr2 <- function() {dat1 %>% mutate(x = NA ^ (x < 0) * x)}
microbenchmark(dtbl1(), dplr1(), dplr2(), unit='relative', times=20L)
#Unit: relative
# expr min lq median uq max neval
# dtbl1() 1.091208 4.319863 4.194086 4.162326 4.252482 20
# dplr1() 1.000000 1.000000 1.000000 1.000000 1.000000 20
# dplr2() 6.251354 5.529948 5.344294 5.311595 5.190192 20