There is a pure C++11 (no boost, no macros too) solution to this problem. Using the same trick as this answer we can build a sequence of numbers and unpack them to call f
to construct a std::array
:
#include <array>
#include <algorithm>
#include <iterator>
#include <iostream>
template<int ...>
struct seq { };
template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };
template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
constexpr int f(int n) {
return n;
}
template <int N>
class array_thinger {
typedef typename gens<N>::type list;
template <int ...S>
static constexpr std::array<int,N> make_arr(seq<S...>) {
return std::array<int,N>{{f(S)...}};
}
public:
static constexpr std::array<int,N> arr = make_arr(list());
};
template <int N>
constexpr std::array<int,N> array_thinger<N>::arr;
int main() {
std::copy(begin(array_thinger<10>::arr), end(array_thinger<10>::arr),
std::ostream_iterator<int>(std::cout, "
"));
}
(Tested with g++ 4.7)
You could skip std::array
entirely with a bit more work, but I think in this instance it's cleaner and simpler to just use std::array
.
You can also do this recursively:
#include <array>
#include <functional>
#include <algorithm>
#include <iterator>
#include <iostream>
constexpr int f(int n) {
return n;
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N==sizeof...(Vals),std::array<int, N>>::type
make() {
return std::array<int,N>{{Vals...}};
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N!=sizeof...(Vals), std::array<int,N>>::type
make() {
return make<N, Vals..., f(sizeof...(Vals))>();
}
int main() {
const auto arr = make<10>();
std::copy(begin(arr), end(arr), std::ostream_iterator<int>(std::cout, "
"));
}
Which is arguably simpler.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…