Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
729 views
in Technique[技术] by (71.8m points)

numpy - Vectorized way of calculating row-wise dot product two matrices with Scipy

I want to calculate the row-wise dot product of two matrices of the same dimension as fast as possible. This is the way I am doing it:

import numpy as np
a = np.array([[1,2,3], [3,4,5]])
b = np.array([[1,2,3], [1,2,3]])
result = np.array([])
for row1, row2 in a, b:
    result = np.append(result, np.dot(row1, row2))
print result

and of course the output is:

[ 26.  14.]
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Straightforward way to do that is:

import numpy as np
a=np.array([[1,2,3],[3,4,5]])
b=np.array([[1,2,3],[1,2,3]])
np.sum(a*b, axis=1)

which avoids the python loop and is faster in cases like:

def npsumdot(x, y):
    return np.sum(x*y, axis=1)

def loopdot(x, y):
    result = np.empty((x.shape[0]))
    for i in range(x.shape[0]):
        result[i] = np.dot(x[i], y[i])
    return result

timeit npsumdot(np.random.rand(500000,50),np.random.rand(500000,50))
# 1 loops, best of 3: 861 ms per loop
timeit loopdot(np.random.rand(500000,50),np.random.rand(500000,50))
# 1 loops, best of 3: 1.58 s per loop

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...