I am not sure what you mean by ID of map task but you can access task information using TaskContext
:
import org.apache.spark.TaskContext
sc.parallelize(Seq[Int](), 4).mapPartitions(_ => {
val ctx = TaskContext.get
val stageId = ctx.stageId
val partId = ctx.partitionId
val hostname = java.net.InetAddress.getLocalHost().getHostName()
Iterator(s"Stage: $stageId, Partition: $partId, Host: $hostname")
}).collect.foreach(println)
A similar functionality has been added to PySpark in Spark 2.2.0 (SPARK-18576):
from pyspark import TaskContext
import socket
def task_info(*_):
ctx = TaskContext()
return ["Stage: {0}, Partition: {1}, Host: {2}".format(
ctx.stageId(), ctx.partitionId(), socket.gethostname())]
for x in sc.parallelize([], 4).mapPartitions(task_info).collect():
print(x)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…