I'm getting thoroughly confused over matrix definitions. I have a matrix class, which holds a float[16]
which I assumed is row-major, based on the following observations:
float matrixA[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
float matrixB[4][4] = { { 0, 1, 2, 3 }, { 4, 5, 6, 7 }, { 8, 9, 10, 11 }, { 12, 13, 14, 15 } };
matrixA
and matrixB
both have the same linear layout in memory (i.e. all numbers are in order). According to http://en.wikipedia.org/wiki/Row-major_order this indicates a row-major layout.
matrixA[0] == matrixB[0][0];
matrixA[3] == matrixB[0][3];
matrixA[4] == matrixB[1][0];
matrixA[7] == matrixB[1][3];
Therefore, matrixB[0]
= row 0, matrixB[1]
= row 1, etc. Again, this indicates row-major layout.
My problem / confusion comes when I create a translation matrix which looks like:
1, 0, 0, transX
0, 1, 0, transY
0, 0, 1, transZ
0, 0, 0, 1
Which is laid out in memory as, { 1, 0, 0, transX, 0, 1, 0, transY, 0, 0, 1, transZ, 0, 0, 0, 1 }
.
Then when I call glUniformMatrix4fv, I need to set the transpose flag to GL_FALSE, indicating that it's column-major, else transforms such as translate / scale etc don't get applied correctly:
If transpose is GL_FALSE, each matrix is assumed to be supplied in
column major order. If transpose is GL_TRUE, each matrix is assumed to
be supplied in row major order.
Why does my matrix, which appears to be row-major, need to be passed to OpenGL as column-major?
See Question&Answers more detail:
os