Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
845 views
in Technique[技术] by (71.8m points)

math - Confusion between C++ and OpenGL matrix order (row-major vs column-major)

I'm getting thoroughly confused over matrix definitions. I have a matrix class, which holds a float[16] which I assumed is row-major, based on the following observations:

float matrixA[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
float matrixB[4][4] = { { 0, 1, 2, 3 }, { 4, 5, 6, 7 }, { 8, 9, 10, 11 }, { 12, 13, 14, 15 } };

matrixA and matrixB both have the same linear layout in memory (i.e. all numbers are in order). According to http://en.wikipedia.org/wiki/Row-major_order this indicates a row-major layout.

matrixA[0] == matrixB[0][0];
matrixA[3] == matrixB[0][3];
matrixA[4] == matrixB[1][0];
matrixA[7] == matrixB[1][3];

Therefore, matrixB[0] = row 0, matrixB[1] = row 1, etc. Again, this indicates row-major layout.

My problem / confusion comes when I create a translation matrix which looks like:

1, 0, 0, transX
0, 1, 0, transY
0, 0, 1, transZ
0, 0, 0, 1

Which is laid out in memory as, { 1, 0, 0, transX, 0, 1, 0, transY, 0, 0, 1, transZ, 0, 0, 0, 1 }.

Then when I call glUniformMatrix4fv, I need to set the transpose flag to GL_FALSE, indicating that it's column-major, else transforms such as translate / scale etc don't get applied correctly:

If transpose is GL_FALSE, each matrix is assumed to be supplied in column major order. If transpose is GL_TRUE, each matrix is assumed to be supplied in row major order.

Why does my matrix, which appears to be row-major, need to be passed to OpenGL as column-major?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

matrix notation used in opengl documentation does not describe in-memory layout for OpenGL matrices

If think it'll be easier if you drop/forget about the entire "row/column-major" thing. That's because in addition to row/column major, the programmer can also decide how he would want to lay out the matrix in the memory (whether adjacent elements form rows or columns), in addition to the notation, which adds to confusion.

OpenGL matrices have same memory layout as directx matrices.

x.x x.y x.z 0
y.x y.y y.z 0
z.x z.y z.z 0
p.x p.y p.z 1

or

{ x.x x.y x.z 0 y.x y.y y.z 0 z.x z.y z.z 0 p.x p.y p.z 1 }
  • x, y, z are 3-component vectors describing the matrix coordinate system (local coordinate system within relative to the global coordinate system).

  • p is a 3-component vector describing the origin of matrix coordinate system.

Which means that the translation matrix should be laid out in memory like this:

{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, transX, transY, transZ, 1 }.

Leave it at that, and the rest should be easy.

---citation from old opengl faq--


9.005 Are OpenGL matrices column-major or row-major?

For programming purposes, OpenGL matrices are 16-value arrays with base vectors laid out contiguously in memory. The translation components occupy the 13th, 14th, and 15th elements of the 16-element matrix, where indices are numbered from 1 to 16 as described in section 2.11.2 of the OpenGL 2.1 Specification.

Column-major versus row-major is purely a notational convention. Note that post-multiplying with column-major matrices produces the same result as pre-multiplying with row-major matrices. The OpenGL Specification and the OpenGL Reference Manual both use column-major notation. You can use any notation, as long as it's clearly stated.

Sadly, the use of column-major format in the spec and blue book has resulted in endless confusion in the OpenGL programming community. Column-major notation suggests that matrices are not laid out in memory as a programmer would expect.



与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...