Very often I want to convert a list wherein each index has identical element types to a data frame. For example, I may have a list:
> my.list
[[1]]
[[1]]$global_stdev_ppb
[1] 24267673
[[1]]$range
[1] 0.03114799
[[1]]$tok
[1] "hello"
[[1]]$global_freq_ppb
[1] 211592.6
[[2]]
[[2]]$global_stdev_ppb
[1] 11561448
[[2]]$range
[1] 0.08870838
[[2]]$tok
[1] "world"
[[2]]$global_freq_ppb
[1] 1002043
I want to convert this list to a data frame where each index element is a column. The natural (to me) thing to go is to is use do.call
:
> my.matrix<-do.call("rbind", my.list)
> my.matrix
global_stdev_ppb range tok global_freq_ppb
[1,] 24267673 0.03114799 "hello" 211592.6
[2,] 11561448 0.08870838 "world" 1002043
Straightforward enough, but when I attempt to cast this matrix as a data frame, the columns remain list elements, rather than vectors:
> my.df<-as.data.frame(my.matrix, stringsAsFactors=FALSE)
> my.df[,1]
[[1]]
[1] 24267673
[[2]]
[1] 11561448
Currently, to get the data frame cast properly I am iterating over each column using unlist
and as.vector
, then recasting the data frame as such:
new.list<-lapply(1:ncol(my.matrix), function(x) as.vector(unlist(my.matrix[,x])))
my.df<-as.data.frame(do.call(cbind, new.list), stringsAsFactors=FALSE)
This, however, seem very inefficient. Is there are better way to do this?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…