Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
217 views
in Technique[技术] by (71.8m points)

python - Neural Network LSTM input shape from dataframe

I am trying to implement an LSTM with Keras.

I know that LSTM's in Keras require a 3D tensor with shape (nb_samples, timesteps, input_dim) as an input. However, I am not entirely sure how the input should look like in my case, as I have just one sample of T observations for each input, not multiple samples, i.e. (nb_samples=1, timesteps=T, input_dim=N). Is it better to split each of my inputs into samples of length T/M? T is around a few million observations for me, so how long should each sample in that case be, i.e., how would I choose M?

Also, am I right in that this tensor should look something like:

[[[a_11, a_12, ..., a_1M], [a_21, a_22, ..., a_2M], ..., [a_N1, a_N2, ..., a_NM]], 
 [[b_11, b_12, ..., b_1M], [b_21, b_22, ..., b_2M], ..., [b_N1, b_N2, ..., b_NM]], 
 ..., 
 [[x_11, x_12, ..., a_1M], [x_21, x_22, ..., x_2M], ..., [x_N1, x_N2, ..., x_NM]]]

where M and N defined as before and x corresponds to the last sample that I would have obtained from splitting as discussed above?

Finally, given a pandas dataframe with T observations in each column, and N columns, one for each input, how can I create such an input to feed to Keras?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Below is an example that sets up time series data to train an LSTM. The model output is nonsense as I only set it up to demonstrate how to build the model.

import pandas as pd
import numpy as np
# Get some time series data
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/timeseries.csv")
df.head()

Time series dataframe:

Date      A       B       C      D      E      F      G
0   2008-03-18  24.68  164.93  114.73  26.27  19.21  28.87  63.44
1   2008-03-19  24.18  164.89  114.75  26.22  19.07  27.76  59.98
2   2008-03-20  23.99  164.63  115.04  25.78  19.01  27.04  59.61
3   2008-03-25  24.14  163.92  114.85  27.41  19.61  27.84  59.41
4   2008-03-26  24.44  163.45  114.84  26.86  19.53  28.02  60.09

You can build put inputs into a vector and then use pandas .cumsum() function to build the sequence for the time series:

# Put your inputs into a single list
df['single_input_vector'] = df[input_cols].apply(tuple, axis=1).apply(list)
# Double-encapsulate list so that you can sum it in the next step and keep time steps as separate elements
df['single_input_vector'] = df.single_input_vector.apply(lambda x: [list(x)])
# Use .cumsum() to include previous row vectors in the current row list of vectors
df['cumulative_input_vectors'] = df.single_input_vector.cumsum()

The output can be set up in a similar way, but it will be a single vector instead of a sequence:

# If your output is multi-dimensional, you need to capture those dimensions in one object
# If your output is a single dimension, this step may be unnecessary
df['output_vector'] = df[output_cols].apply(tuple, axis=1).apply(list)

The input sequences have to be the same length to run them through the model, so you need to pad them to be the max length of your cumulative vectors:

# Pad your sequences so they are the same length
from keras.preprocessing.sequence import pad_sequences

max_sequence_length = df.cumulative_input_vectors.apply(len).max()
# Save it as a list   
padded_sequences = pad_sequences(df.cumulative_input_vectors.tolist(), max_sequence_length).tolist()
df['padded_input_vectors'] = pd.Series(padded_sequences).apply(np.asarray)

Training data can be pulled from the dataframe and put into numpy arrays. Note that the input data that comes out of the dataframe will not make a 3D array. It makes an array of arrays, which is not the same thing.

You can use hstack and reshape to build a 3D input array.

# Extract your training data
X_train_init = np.asarray(df.padded_input_vectors)
# Use hstack to and reshape to make the inputs a 3d vector
X_train = np.hstack(X_train_init).reshape(len(df),max_sequence_length,len(input_cols))
y_train = np.hstack(np.asarray(df.output_vector)).reshape(len(df),len(output_cols))

To prove it:

>>> print(X_train_init.shape)
(11,)
>>> print(X_train.shape)
(11, 11, 6)
>>> print(X_train == X_train_init)
False

Once you have training data you can define the dimensions of your input layer and output layers.

# Get your input dimensions
# Input length is the length for one input sequence (i.e. the number of rows for your sample)
# Input dim is the number of dimensions in one input vector (i.e. number of input columns)
input_length = X_train.shape[1]
input_dim = X_train.shape[2]
# Output dimensions is the shape of a single output vector
# In this case it's just 1, but it could be more
output_dim = len(y_train[0])

Build the model:

from keras.models import Model, Sequential
from keras.layers import LSTM, Dense

# Build the model
model = Sequential()

# I arbitrarily picked the output dimensions as 4
model.add(LSTM(4, input_dim = input_dim, input_length = input_length))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))

model.compile(loss='mean_squared_error',
              optimizer='sgd',
              metrics=['accuracy'])

Finally you can train the model and save the training log as history:

# Set batch_size to 7 to show that it doesn't have to be a factor or multiple of your sample size
history = model.fit(X_train, y_train,
              batch_size=7, nb_epoch=3,
              verbose = 1)

Output:

Epoch 1/3
11/11 [==============================] - 0s - loss: 3498.5756 - acc: 0.0000e+00     
Epoch 2/3
11/11 [==============================] - 0s - loss: 3498.5755 - acc: 0.0000e+00     
Epoch 3/3
11/11 [==============================] - 0s - loss: 3498.5757 - acc: 0.0000e+00 

That's it. Use model.predict(X) where X is the same format (other than the number of samples) as X_train in order to make predictions from the model.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...