Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
547 views
in Technique[技术] by (71.8m points)

python - Does the SVM in sklearn support incremental (online) learning?

I am currently in the process of designing a recommender system for text articles (a binary case of 'interesting' or 'not interesting'). One of my specifications is that it should continuously update to changing trends.

From what I can tell, the best way to do this is to make use of machine learning algorithm that supports incremental/online learning.

Algorithms like the Perceptron and Winnow support online learning but I am not completely certain about Support Vector Machines. Does the scikit-learn python library support online learning and if so, is a support vector machine one of the algorithms that can make use of it?

I am obviously not completely tied down to using support vector machines, but they are usually the go to algorithm for binary classification due to their all round performance. I would be willing to change to whatever fits best in the end.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

While online algorithms for SVMs do exist, it has become important to specify if you want kernel or linear SVMs, as many efficient algorithms have been developed for the special case of linear SVMs.

For the linear case, if you use the SGD classifier in scikit-learn with the hinge loss and L2 regularization you will get an SVM that can be updated online/incrementall. You can combine this with feature transforms that approximate a kernel to get similar to an online kernel SVM.

One of my specifications is that it should continuously update to changing trends.

This is referred to as concept drift, and will not be handled well by a simple online SVM. Using the PassiveAggresive classifier will likely give you better results, as it's learning rate does not decrease over time.

Assuming you get feedback while training / running, you can attempt to detect decreases in accuracy over time and begin training a new model when the accuracy starts to decrease (and switch to the new one when you believe that it has become more accurate). JSAT has 2 drift detection methods (see jsat.driftdetectors) that can be used to track accuracy and alert you when it has changed.

It also has more online linear and kernel methods.

(bias note: I'm the author of JSAT).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...