Here is my example solution using CountVectorizer
in scikit-learn. And referring to this post, you can simply use matrix multiplication to get word-word co-occurrence matrix.
from sklearn.feature_extraction.text import CountVectorizer
docs = ['this this this book',
'this cat good',
'cat good shit']
count_model = CountVectorizer(ngram_range=(1,1)) # default unigram model
X = count_model.fit_transform(docs)
# X[X > 0] = 1 # run this line if you don't want extra within-text cooccurence (see below)
Xc = (X.T * X) # this is co-occurrence matrix in sparse csr format
Xc.setdiag(0) # sometimes you want to fill same word cooccurence to 0
print(Xc.todense()) # print out matrix in dense format
You can also refer to dictionary of words in count_model
,
count_model.vocabulary_
Or, if you want to normalize by diagonal component (referred to answer in previous post).
import scipy.sparse as sp
Xc = (X.T * X)
g = sp.diags(1./Xc.diagonal())
Xc_norm = g * Xc # normalized co-occurence matrix
Extra to note @Federico Caccia answer, if you don't want co-occurrence that are spurious from the own text, set occurrence that is greater that 1 to 1 e.g.
X[X > 0] = 1 # do this line first before computing cooccurrence
Xc = (X.T * X)
...
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…