In the context of unit testing some functions, I'm trying to establish the equality of 2 DataFrames using python pandas:
ipdb> expect
1 2
2012-01-01 00:00:00+00:00 NaN 3
2013-05-14 12:00:00+00:00 3 NaN
ipdb> df
identifier 1 2
timestamp
2012-01-01 00:00:00+00:00 NaN 3
2013-05-14 12:00:00+00:00 3 NaN
ipdb> df[1][0]
nan
ipdb> df[1][0], expect[1][0]
(nan, nan)
ipdb> df[1][0] == expect[1][0]
False
ipdb> df[1][1] == expect[1][1]
True
ipdb> type(df[1][0])
<type 'numpy.float64'>
ipdb> type(expect[1][0])
<type 'numpy.float64'>
ipdb> (list(df[1]), list(expect[1]))
([nan, 3.0], [nan, 3.0])
ipdb> df1, df2 = (list(df[1]), list(expect[1])) ;; df1 == df2
False
Given that I'm trying to test the entire of expect
against the entire of df
, including NaN
positions, what am I doing wrong?
What is the simplest way to compare equality of Series/DataFrames including NaN
s?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…