User defined functions are defined for up to 22 parameters. Only udf
helper is define for at most 10 arguments. To handle functions with larger number of parameters you can use org.apache.spark.sql.UDFRegistration
.
For example
val dummy = ((
x0: Int, x1: Int, x2: Int, x3: Int, x4: Int, x5: Int, x6: Int, x7: Int,
x8: Int, x9: Int, x10: Int, x11: Int, x12: Int, x13: Int, x14: Int,
x15: Int, x16: Int, x17: Int, x18: Int, x19: Int, x20: Int, x21: Int) => 1)
van be registered:
import org.apache.spark.sql.expressions.UserDefinedFunction
val dummyUdf: UserDefinedFunction = spark.udf.register("dummy", dummy)
and use directly
val df = spark.range(1)
val exprs = (0 to 21).map(_ => lit(1))
df.select(dummyUdf(exprs: _*))
or by name via callUdf
import org.apache.spark.sql.functions.callUDF
df.select(
callUDF("dummy", exprs: _*).alias("dummy")
)
or SQL expression:
df.selectExpr(s"""dummy(${Seq.fill(22)(1).mkString(",")})""")
You can also create an UserDefinedFunction
object:
import org.apache.spark.sql.expressions.UserDefinedFunction
Seq(1).toDF.select(UserDefinedFunction(dummy, IntegerType, None)(exprs: _*))
In practice having a function with 22 arguments is not very useful and unless you want to use Scala reflection to generate these there are maintenance nightmare.
I would either consider using collections (array
, map
) or struct
as an input or divide this into multiple modules. For example:
val aLongArray = array((0 to 256).map(_ => lit(1)): _*)
val udfWitharray = udf((xs: Seq[Int]) => 1)
Seq(1).toDF.select(udfWitharray(aLongArray).alias("dummy"))