If you came here looking for information on how to
merge a DataFrame
and Series
on the index, please look at this
answer.
The OP's original intention was to ask how to assign series elements
as columns to another DataFrame. If you are interested in knowing the
answer to this, look at the accepted answer by EdChum.
Best I can come up with is
df = pd.DataFrame({'a':[1, 2], 'b':[3, 4]}) # see EDIT below
s = pd.Series({'s1':5, 's2':6})
for name in s.index:
df[name] = s[name]
a b s1 s2
0 1 3 5 6
1 2 4 5 6
Can anybody suggest better syntax / faster method?
My attempts:
df.merge(s)
AttributeError: 'Series' object has no attribute 'columns'
and
df.join(s)
ValueError: Other Series must have a name
EDIT The first two answers posted highlighted a problem with my question, so please use the following to construct df
:
df = pd.DataFrame({'a':[np.nan, 2, 3], 'b':[4, 5, 6]}, index=[3, 5, 6])
with the final result
a b s1 s2
3 NaN 4 5 6
5 2 5 5 6
6 3 6 5 6
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…