I'm surely missing something simple here. Trying to merge two dataframes in pandas that have mostly the same column names, but the right dataframe has some columns that the left doesn't have, and vice versa.
>df_may
id quantity attr_1 attr_2
0 1 20 0 1
1 2 23 1 1
2 3 19 1 1
3 4 19 0 0
>df_jun
id quantity attr_1 attr_3
0 5 8 1 0
1 6 13 0 1
2 7 20 1 1
3 8 25 1 1
I've tried joining with an outer join:
mayjundf = pd.DataFrame.merge(df_may, df_jun, how="outer")
But that yields:
Left data columns not unique: Index([....
I've also specified a single column to join on (on = "id", e.g.), but that duplicates all columns except "id" like attr_1_x, attr_1_y, which is not ideal. I've also passed the entire list of columns (there are many) to "on":
mayjundf = pd.DataFrame.merge(df_may, df_jun, how="outer", on=list(df_may.columns.values))
Which yields:
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
What am I missing? I'd like to get a df with all rows appended, and attr_1, attr_2, attr_3 populated where possible, NaN where they don't show up. This seems like a pretty typical workflow for data munging, but I'm stuck.
Thanks in advance.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…