Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
561 views
in Technique[技术] by (71.8m points)

python - Joblib Parallel multiple cpu's slower than single

I've just started using the Joblib module and I'm trying to understand how the Parallel function works. Below is an example of where parallelizing leads to longer runtimes but I don't understand why. My runtime on 1 cpu was 51 sec vs. 217 secs on 2 cpu.

My assumption was that running the loop in parallel would copy lists a and b to each processor. Then dispatch item_n to one cpu and item_n+1 to the other cpu, execute the function and then write the results back to a list (in order). Then grab the next 2 items and so on. I'm obviously missing something.

Is this a poor example or use of joblib? Did I simply structure the code wrong?

Here is the example:

import numpy as np
from matplotlib.path import Path
from joblib import Parallel, delayed

## Create pairs of points for line segments
a = zip(np.random.rand(5000,2),np.random.rand(5000,2))

b = zip(np.random.rand(300,2),np.random.rand(300,2))

## Check if one line segment contains another. 
def check_paths(path, paths):
    for other_path in paths:
        res='no cross'
        chck = Path(other_path)
        if chck.contains_path(path)==1:
            res= 'cross'
            break
    return res

res = Parallel(n_jobs=2) (delayed(check_paths) (Path(points), a) for points in b)
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

In short: I cannot reproduce your problem. If you are on Windows you should use a protector for your main loop: documentation of joblib.Parallel. The only problem I see is much data copying overhead, but your numbers seem unrealistic to be caused by that.

In long, here are my timings with your code:

On my i7 3770k (4 cores, 8 threads) I get the following results for different n_jobs:

For-loop: Finished in 33.8521318436 sec
n_jobs=1: Finished in 33.5527760983 sec
n_jobs=2: Finished in 18.9543449879 sec
n_jobs=3: Finished in 13.4856410027 sec
n_jobs=4: Finished in 15.0832719803 sec
n_jobs=5: Finished in 14.7227740288 sec
n_jobs=6: Finished in 15.6106669903 sec

So there is a gain in using multiple processes. However although I have four cores the gain already saturates at three processes. So I guess the execution time is actually limited by memory access rather than processor time.

You should notice that the arguments for each single loop entry are copied to the process executing it. This means you copy a for each element in b. That is ineffective. So instead access the global a. (Parallel will fork the process, copying all global variables to the newly spawned processes, so a is accessible). This gives me the following code (with timing and main loop guard as the documentation of joblib recommends:

import numpy as np
from matplotlib.path import Path
from joblib import Parallel, delayed
import time
import sys

## Check if one line segment contains another. 

def check_paths(path):
    for other_path in a:
        res='no cross'
        chck = Path(other_path)
        if chck.contains_path(path)==1:
            res= 'cross'
            break
    return res

if __name__ == '__main__':
    ## Create pairs of points for line segments
    a = zip(np.random.rand(5000,2),np.random.rand(5000,2))
    b = zip(np.random.rand(300,2),np.random.rand(300,2))

    now = time.time()
    if len(sys.argv) >= 2:
        res = Parallel(n_jobs=int(sys.argv[1])) (delayed(check_paths) (Path(points)) for points in b)
    else:
        res = [check_paths(Path(points)) for points in b]
    print "Finished in", time.time()-now , "sec"

Timing results:

 n_jobs=1: Finished in 34.2845709324 sec
 n_jobs=2: Finished in 16.6254048347 sec
 n_jobs=3: Finished in 11.219119072 sec
 n_jobs=4: Finished in 8.61683392525 sec
 n_jobs=5: Finished in 8.51907801628 sec
 n_jobs=6: Finished in 8.21842098236 sec
 n_jobs=7: Finished in 8.21816396713 sec
 n_jobs=8: Finished in 7.81841087341 sec

The saturation now slightly moved to n_jobs=4 which is the value to be expected.

check_paths does several redundant calculations that can easily be eliminated. Firstly for all elements in other_paths=a the line Path(...) is executed in every call. Precalculate that. Secondly the string res='no cross' is written is each loop turn, although it may only change once (followed by a break and return). Move the line in front of the loop. Then the code looks like this:

import numpy as np
from matplotlib.path import Path
from joblib import Parallel, delayed
import time
import sys

## Check if one line segment contains another. 

def check_paths(path):
    #global a
    #print(path, a[:10])
    res='no cross'
    for other_path in a:
        if other_path.contains_path(path)==1:
            res= 'cross'
            break
    return res

if __name__ == '__main__':
    ## Create pairs of points for line segments
    a = zip(np.random.rand(5000,2),np.random.rand(5000,2))
    a = [Path(x) for x in a]

    b = zip(np.random.rand(300,2),np.random.rand(300,2))

    now = time.time()
    if len(sys.argv) >= 2:
        res = Parallel(n_jobs=int(sys.argv[1])) (delayed(check_paths) (Path(points)) for points in b)
    else:
        res = [check_paths(Path(points)) for points in b]
    print "Finished in", time.time()-now , "sec"

with timings:

n_jobs=1: Finished in 5.33742594719 sec
n_jobs=2: Finished in 2.70858597755 sec
n_jobs=3: Finished in 1.80810618401 sec
n_jobs=4: Finished in 1.40814709663 sec
n_jobs=5: Finished in 1.50854086876 sec
n_jobs=6: Finished in 1.50901818275 sec
n_jobs=7: Finished in 1.51030707359 sec
n_jobs=8: Finished in 1.51062297821 sec

A side node on your code, although I haven't really followed its purpose as this was unrelated to your question, contains_path will only return True if this path completely contains the given path. (see documentation). Therefore your function will basically always return no cross given the random input.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...