Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
761 views
in Technique[技术] by (71.8m points)

coq - Why do Calculus of Construction based languages use Setoids so much?

One finds that Setoids are widely used in languages such as Agda, Coq, ... Indeed languages such as Lean have argued that they could help avoid "Setoid Hell". What is the reason for using Setoids in the first place? Does the move to extensional type theories based on HoTT (such as cubical Agda) reduce the need for Setoids?


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

As Li-yao Xia's answer describes, setoids are used when we don't have or don't want to use quotients.

In the HoTT book and in Lean quotients are (basically) axiomatized. One difference between Lean and the HoTT book is that the latter has many more higher inductive types, and Lean only has quotients and (regular) inductive types. If we just restrict our attention to quotients (set quotients in the HoTT book), it works the same in Lean and in Book HoTT. In this case you just postulate that given a type A and an equivalence R on A you have a quotient Q, and a function [-] : A → Q with the property ? x y : A, R x y → [x] = [y]. It comes with the following elimination principle: to construct a function g : Q → X for some type X (or hSet X in HoTT) we need a function f : A → X such that we can prove ? x y : A, R x y → f x = f y. This comes with the computation rule, that states ? x : A, g [x] ≡ f x (this is a definitional equality in both Lean and Book HoTT).

The main disadvantage of this quotient is that it breaks canonicity. Canonicity states that every closed term (that is, a term without free variables) in (say) the natural numbers normalizes to either zero or the successor of some natural number. The reason that this quotient breaks canonicity is that we can apply the elimination principle for = to the new equalities in a quotient, and a term like that will not reduce. In Lean the opinion is that this doesn't matter, since in all cases we care about we can still prove an equality, even though it might not be a definitional equality.

Cubical type theory has a fancy way to work with quotients while retaining canonicity. In CTT equality works differently, and this means that higher inductive types can be introduced while keeping canonicity. Potential disadvantages of CTT are that the type theory is a lot more complicated, and that you have to embrace HoTT (and in particular give up on proof irrelevance).


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...