You can make a new multi index based on the Cartesian product of the levels of the existing multi index. Then, re-index your data frame using the new index.
new_index = pd.MultiIndex.from_product(df.index.levels)
new_df = df.reindex(new_index)
# Optional: convert missing values to zero, and convert the data back
# to integers. See explanation below.
new_df = new_df.fillna(0).astype(int)
That's it! The new data frame has all the possible index values. The existing data is indexed correctly.
Read on for a more detailed explanation.
Explanation
Set up sample data
import pandas as pd
df = pd.DataFrame({'A': ['loc_a'] * 12 + ['loc_b'],
'B': ['group_a'] * 7 + ['group_b'] * 3 + ['group_c'] * 2 + ['group_a'],
'Date': ["2013-06-11",
"2013-07-02",
"2013-07-09",
"2013-07-30",
"2013-08-06",
"2013-09-03",
"2013-10-01",
"2013-07-09",
"2013-08-06",
"2013-09-03",
"2013-07-09",
"2013-09-03",
"2013-10-01"],
'Value': [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3]})
df.Date = pd.to_datetime(df.Date)
df = df.set_index(['A', 'B', 'Date'])
Here's what the sample data looks like
Value
A B Date
loc_a group_a 2013-06-11 22
2013-07-02 35
2013-07-09 14
2013-07-30 9
2013-08-06 4
2013-09-03 40
2013-10-01 18
group_b 2013-07-09 4
2013-08-06 2
2013-09-03 5
group_c 2013-07-09 1
2013-09-03 2
loc_b group_a 2013-10-01 3
Make new index
Using from_product we can make a new multi index. This new index is the Cartesian product of all the values from all the levels of the old index.
new_index = pd.MultiIndex.from_product(df.index.levels)
Reindex
Use the new index to reindex the existing data frame.
new_df = df.reindex(new_index)
All the possible combinations are now present. The missing values are null (NaN).
The expanded, re-indexed data frame looks like this:
Value
loc_a group_a 2013-06-11 22.0
2013-07-02 35.0
2013-07-09 14.0
2013-07-30 9.0
2013-08-06 4.0
2013-09-03 40.0
2013-10-01 18.0
group_b 2013-06-11 NaN
2013-07-02 NaN
2013-07-09 4.0
2013-07-30 NaN
2013-08-06 2.0
2013-09-03 5.0
2013-10-01 NaN
group_c 2013-06-11 NaN
2013-07-02 NaN
2013-07-09 1.0
2013-07-30 NaN
2013-08-06 NaN
2013-09-03 2.0
2013-10-01 NaN
loc_b group_a 2013-06-11 NaN
2013-07-02 NaN
2013-07-09 NaN
2013-07-30 NaN
2013-08-06 NaN
2013-09-03 NaN
2013-10-01 3.0
group_b 2013-06-11 NaN
2013-07-02 NaN
2013-07-09 NaN
2013-07-30 NaN
2013-08-06 NaN
2013-09-03 NaN
2013-10-01 NaN
group_c 2013-06-11 NaN
2013-07-02 NaN
2013-07-09 NaN
2013-07-30 NaN
2013-08-06 NaN
2013-09-03 NaN
2013-10-01 NaN
Nulls in integer column
You can see that the data in the new data frame has been converted from ints to floats. Pandas can't have nulls in an integer column. Optionally, we can convert all the nulls to 0, and cast the data back to integers.
new_df = new_df.fillna(0).astype(int)
Result
Value
loc_a group_a 2013-06-11 22
2013-07-02 35
2013-07-09 14
2013-07-30 9
2013-08-06 4
2013-09-03 40
2013-10-01 18
group_b 2013-06-11 0
2013-07-02 0
2013-07-09 4
2013-07-30 0
2013-08-06 2
2013-09-03 5
2013-10-01 0
group_c 2013-06-11 0
2013-07-02 0
2013-07-09 1
2013-07-30 0
2013-08-06 0
2013-09-03 2
2013-10-01 0
loc_b group_a 2013-06-11 0
2013-07-02 0
2013-07-09 0
2013-07-30 0
2013-08-06 0
2013-09-03 0
2013-10-01 3
group_b 2013-06-11 0
2013-07-02 0
2013-07-09 0
2013-07-30 0
2013-08-06 0
2013-09-03 0
2013-10-01 0
group_c 2013-06-11 0
2013-07-02 0
2013-07-09 0
2013-07-30 0
2013-08-06 0
2013-09-03 0
2013-10-01 0