I have a sql file which consists of the data below which I read into pandas.
df = pandas.read_sql('Database count details', con=engine,
index_col='id', parse_dates='newest_available_date')
Output
id code newest_date_available
9793708 3514 2015-12-24
9792282 2399 2015-12-25
9797602 7452 2015-12-25
9804367 9736 2016-01-20
9804438 9870 2016-01-20
The next line of code is to get last week's date
date_before = datetime.date.today() - datetime.timedelta(days=7) # Which is 2016-01-20
What I am trying to do is, to compare date_before
with df
and print out all rows that is less than date_before
if (df['newest_available_date'] < date_before):
print(#all rows)
Obviously this returns me an error The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
How should I do this?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…