Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
588 views
in Technique[技术] by (71.8m points)

machine learning - Fine Tuning of GoogLeNet Model

I trained GoogLeNet model from scratch. But it didn't give me the promising results.
As an alternative, I would like to do fine tuning of GoogLeNet model on my dataset. Does anyone know what are the steps should I follow?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Assuming you are trying to do image classification. These should be the steps for finetuning a model:

1. Classification layer

The original classification layer "loss3/classifier" outputs predictions for 1000 classes (it's mum_output is set to 1000). You'll need to replace it with a new layer with appropriate num_output. Replacing the classification layer:

  1. Change layer's name (so that when you read the original weights from caffemodel file there will be no conflict with the weights of this layer).
  2. Change num_output to the right number of output classes you are trying to predict.
  3. Note that you need to change ALL classification layers. Usually there is only one, but GoogLeNet happens to have three: "loss1/classifier", "loss2/classifier" and "loss3/classifier".

2. Data

You need to make a new training dataset with the new labels you want to fine tune to. See, for example, this post on how to make an lmdb dataset.

3. How extensive a finetuning you want?

When finetuning a model, you can train ALL model's weights or choose to fix some weights (usually filters of the lower/deeper layers) and train only the weights of the top-most layers. This choice is up to you and it ususally depends on the amount of training data available (the more examples you have the more weights you can afford to finetune).
Each layer (that holds trainable parameters) has param { lr_mult: XX }. This coefficient determines how susceptible these weights to SGD updates. Setting param { lr_mult: 0 } means you FIX the weights of this layer and they will not be changed during the training process.
Edit your train_val.prototxt accordingly.

4. Run caffe

Run caffe train but supply it with caffemodel weights as an initial weights:

~$ $CAFFE_ROOT/build/tools/caffe train -solver /path/to/solver.ptototxt -weights /path/to/orig_googlenet_weights.caffemodel 

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...