Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
599 views
in Technique[技术] by (71.8m points)

python - matplotlib generic colormap from tab10

This question is related to this one from SO (matplotlib-change-colormap-tab20-to-have-three-colors)

I would like to tweak the tab10 colormap in a way that I can change the alpha level of each color in as many steps as I would like to. Below is an example (for 9 color with 3 alpha levels) which does not yield the expected output. Furthermore, it is not generic enough (because of the if elif staements).

Any ideas how I could do that ?

In this example, I do have 3 groups with 3 subgroups:

import pandas as pd
from matplotlib import pyplot as plt
import numpy as np

n_feature = 3
sub_feature = 3
col = []
for index in range(n_feature*sub_feature):
# loop over colors and change the last entry in descending order 3 times
        col.append(list(plt.cm.tab10(index)))

i = 0        
for item in col:
# loop over colors and change the last entry in descending order 3 times
    if i == 0:
        item[-1] = 0.9
        i+=1
    elif i == 1:
        item[-1] = 0.7
        i+=1
    elif i == 2:
        item[-1] = 0.5
        i = 0

gr = df.groupby(['a', 'a1'])

for index, item in enumerate(gr):
    name, val = item
    y = val.iloc[0,2:].values
    x = np.arange(len(y))
    plt.plot(x, y, '.-', color=col[index])

plt.show()

enter image description here

This is the data:

{'a': {0: 'A', 1: 'A', 2: 'A', 3: 'B', 4: 'B', 5: 'B', 6: 'C', 7: 'C', 8: 'C'}, 'a1': {0: 1, 1: 2, 2: 3, 3: 1, 4: 2, 5: 3, 6: 1, 7: 2, 8: 3}, 'b': {0: 1.0, 1: 5.0, 2: 9.0, 3: 1.5, 4: 5.5, 5: 9.5, 6: 1.75, 7: 5.75, 8: 9.75}, 'c': {0: 2.0, 1: 6.0, 2: 10.0, 3: 2.5, 4: 6.5, 5: 10.5, 6: 2.75, 7: 6.75, 8: 10.75}, 'd': {0: 3.0, 1: 7.0, 2: 11.0, 3: 3.5, 4: 7.5, 5: 11.5, 6: 3.75, 7: 7.75, 8: 11.75}, 'e': {0: 4.0, 1: 8.0, 2: 12.0, 3: 4.5, 4: 8.5, 5: 12.5, 6: 4.75, 7: 8.75, 8: 12.75}}

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You may use the HSV system to obtain differently saturated and luminated colors for the same hue. Suppose you have at most 10 categories, then the tab10 map can be used to get a certain number of base colors. From those you can choose a couple of lighter shades for the subcategories.

The following would be a function categorical_cmap, which takes as input the number of categories (nc) and the number of subcategories (nsc) and returns a colormap with nc*nsc different colors, where for each category there are nsc colors of same hue.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors

def categorical_cmap(nc, nsc, cmap="tab10", continuous=False):
    if nc > plt.get_cmap(cmap).N:
        raise ValueError("Too many categories for colormap.")
    if continuous:
        ccolors = plt.get_cmap(cmap)(np.linspace(0,1,nc))
    else:
        ccolors = plt.get_cmap(cmap)(np.arange(nc, dtype=int))
    cols = np.zeros((nc*nsc, 3))
    for i, c in enumerate(ccolors):
        chsv = matplotlib.colors.rgb_to_hsv(c[:3])
        arhsv = np.tile(chsv,nsc).reshape(nsc,3)
        arhsv[:,1] = np.linspace(chsv[1],0.25,nsc)
        arhsv[:,2] = np.linspace(chsv[2],1,nsc)
        rgb = matplotlib.colors.hsv_to_rgb(arhsv)
        cols[i*nsc:(i+1)*nsc,:] = rgb       
    cmap = matplotlib.colors.ListedColormap(cols)
    return cmap

c1 = categorical_cmap(4, 3, cmap="tab10")
plt.scatter(np.arange(4*3),np.ones(4*3)+1, c=np.arange(4*3), s=180, cmap=c1)

c2 = categorical_cmap(2, 5, cmap="tab10")
plt.scatter(np.arange(10),np.ones(10), c=np.arange(10), s=180, cmap=c2)

c3 = categorical_cmap(5, 4, cmap="tab10")
plt.scatter(np.arange(20),np.ones(20)-1, c=np.arange(20), s=180, cmap=c3)    

plt.margins(y=0.3)
plt.xticks([])
plt.yticks([0,1,2],["(5, 4)", "(2, 5)", "(4, 3)"])
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...