Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
563 views
in Technique[技术] by (71.8m points)

opencv - iOS:Retrieve rectangle shaped image from the background image

I am working on an implementation where I have a rectangle shaped image in an big background image. I am trying to programmatically retrieve the rectangle shaped image from the big image and retrieve text information from that particular rectangle image. I am trying to use Open-CV third party framework, but couldn't able to retrieve the rectangle image from the big background image. Could someone please guide me, how i can achieve this?

UPDATED:

I found the Link to find out the square shapes using OpenCV. Can i get it modified for finding Rectangle shapes? Can someone guide me on this?

UPDATED LATEST:

I got the code finally, here is it below.

    - (cv::Mat)cvMatWithImage:(UIImage *)image
{
    CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.CGImage);
    CGFloat cols = image.size.width;
    CGFloat rows = image.size.height;

    cv::Mat cvMat(rows, cols, CV_8UC4); // 8 bits per component, 4 channels

    CGContextRef contextRef = CGBitmapContextCreate(cvMat.data,                 // Pointer to backing data
                                                    cols,                       // Width of bitmap
                                                    rows,                       // Height of bitmap
                                                    8,                          // Bits per component
                                                    cvMat.step[0],              // Bytes per row
                                                    colorSpace,                 // Colorspace
                                                    kCGImageAlphaNoneSkipLast |
                                                    kCGBitmapByteOrderDefault); // Bitmap info flags

    CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows), image.CGImage);
    CGContextRelease(contextRef);

    return cvMat;
}
-(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat
{
    NSData *data = [NSData dataWithBytes:cvMat.data length:cvMat.elemSize()*cvMat.total()];
    CGColorSpaceRef colorSpace;
    if ( cvMat.elemSize() == 1 ) {
        colorSpace = CGColorSpaceCreateDeviceGray();
    }
    else {
        colorSpace = CGColorSpaceCreateDeviceRGB();
    }

    //CFDataRef data;
    CGDataProviderRef provider = CGDataProviderCreateWithCFData( (CFDataRef) data ); // It SHOULD BE (__bridge CFDataRef)data
    CGImageRef imageRef = CGImageCreate( cvMat.cols, cvMat.rows, 8, 8 * cvMat.elemSize(), cvMat.step[0], colorSpace, kCGImageAlphaNone|kCGBitmapByteOrderDefault, provider, NULL, false, kCGRenderingIntentDefault );
    UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
    CGImageRelease( imageRef );
    CGDataProviderRelease( provider );
    CGColorSpaceRelease( colorSpace );
    return finalImage;
}
-(void)forOpenCV
{
    imageView = [UIImage imageNamed:@"myimage.jpg"];
    if( imageView != nil )
    {
        cv::Mat tempMat = [imageView CVMat];

        cv::Mat greyMat = [self cvMatWithImage:imageView];
        cv::vector<cv::vector<cv::Point> > squares;

        cv::Mat img= [self debugSquares: squares: greyMat];

        imageView = [self UIImageFromCVMat: img];

        self.imageView.image = imageView;
    }
}

double angle( cv::Point pt1, cv::Point pt2, cv::Point pt0 ) {
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

- (cv::Mat) debugSquares: (std::vector<std::vector<cv::Point> >) squares : (cv::Mat &)image
{
    NSLog(@"%lu",squares.size());

    // blur will enhance edge detection

    //cv::Mat blurred(image);
    cv::Mat blurred = image.clone();
    medianBlur(image, blurred, 9);

    cv::Mat gray0(image.size(), CV_8U), gray;
    cv::vector<cv::vector<cv::Point> > contours;

    // find squares in every color plane of the image
    for (int c = 0; c < 3; c++)
    {
        int ch[] = {c, 0};
        mixChannels(&image, 1, &gray0, 1, ch, 1);

        // try several threshold levels
        const int threshold_level = 2;
        for (int l = 0; l < threshold_level; l++)
        {
            // Use Canny instead of zero threshold level!
            // Canny helps to catch squares with gradient shading
            if (l == 0)
            {
                Canny(gray0, gray, 10, 20, 3); //

                // Dilate helps to remove potential holes between edge segments
                dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
            }
            else
            {
                gray = gray0 >= (l+1) * 255 / threshold_level;
            }

            // Find contours and store them in a list
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

            // Test contours
            cv::vector<cv::Point> approx;
            for (size_t i = 0; i < contours.size(); i++)
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);

                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if (approx.size() == 4 &&
                    fabs(contourArea(cv::Mat(approx))) > 1000 &&
                    isContourConvex(cv::Mat(approx)))
                {
                    double maxCosine = 0;

                    for (int j = 2; j < 5; j++)
                    {
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                        maxCosine = MAX(maxCosine, cosine);
                    }

                    if (maxCosine < 0.3)
                        squares.push_back(approx);
                }
            }
        }
    }

    NSLog(@"squares.size(): %lu",squares.size());


    for( size_t i = 0; i < squares.size(); i++ )
    {
        cv::Rect rectangle = boundingRect(cv::Mat(squares[i]));
        NSLog(@"rectangle.x: %d", rectangle.x);
        NSLog(@"rectangle.y: %d", rectangle.y);

        if(i==squares.size()-1)////Detecting Rectangle here
        {
            const cv::Point* p = &squares[i][0];

            int n = (int)squares[i].size();

            NSLog(@"%d",n);

            line(image, cv::Point(507,418), cv::Point(507+1776,418+1372), cv::Scalar(255,0,0),2,8);

            polylines(image, &p, &n, 1, true, cv::Scalar(255,255,0), 5, CV_AA);

            int fx1=rectangle.x;
                NSLog(@"X: %d", fx1);
            int fy1=rectangle.y;
                NSLog(@"Y: %d", fy1);
            int fx2=rectangle.x+rectangle.width;
                NSLog(@"Width: %d", fx2);
            int fy2=rectangle.y+rectangle.height;
                NSLog(@"Height: %d", fy2);

            line(image, cv::Point(fx1,fy1), cv::Point(fx2,fy2), cv::Scalar(0,0,255),2,8);

        }

    }

    return image;
}

Thank you.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Here is a full answer using a small wrapper class to separate the c++ from objective-c code.

I had to raise another question on stackoverflow to deal with my poor c++ knowledge - but I have worked out everything we need to interface c++ cleanly with objective-c code, using the squares.cpp sample code as an example. The aim is to keep the original c++ code as pristine as possible, and to keep the bulk of the work with openCV in pure c++ files for (im)portability.

I have left my original answer in place as this seems to go beyond an edit. The complete demo project is on github

CVViewController.h / CVViewController.m

  • pure Objective-C

  • communicates with openCV c++ code via a WRAPPER... it neither knows nor cares that c++ is processing these method calls behind the wrapper.

CVWrapper.h / CVWrapper.mm

  • objective-C++

does as little as possible, really only two things...

  • calls to UIImage objC++ categories to convert to and from UIImage <> cv::Mat
  • mediates between CVViewController's obj-C methods and CVSquares c++ (class) function calls

CVSquares.h / CVSquares.cpp

  • pure C++
  • CVSquares.cpp declares public functions inside a class definition (in this case, one static function).
    This replaces the work of main{} in the original file.
  • We try to keep CVSquares.cpp as close as possible to the C++ original for portability.

CVViewController.m

//remove 'magic numbers' from original C++ source so we can manipulate them from obj-C
#define TOLERANCE 0.01
#define THRESHOLD 50
#define LEVELS 9

UIImage* image =
        [CVSquaresWrapper detectedSquaresInImage:self.image
                                       tolerance:TOLERANCE
                                       threshold:THRESHOLD
                                          levels:LEVELS];

CVSquaresWrapper.h

//  CVSquaresWrapper.h

#import <Foundation/Foundation.h>

@interface CVSquaresWrapper : NSObject

+ (UIImage*) detectedSquaresInImage:(UIImage*)image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels;

@end

CVSquaresWrapper.mm

//  CVSquaresWrapper.mm
//  wrapper that talks to c++ and to obj-c classes

#import "CVSquaresWrapper.h"
#import "CVSquares.h"
#import "UIImage+OpenCV.h"

@implementation CVSquaresWrapper

+ (UIImage*) detectedSquaresInImage:(UIImage*) image
                          tolerance:(CGFloat)tolerance
                          threshold:(NSInteger)threshold
                             levels:(NSInteger)levels
{
    UIImage* result = nil;

        //convert from UIImage to cv::Mat openCV image format
        //this is a category on UIImage
    cv::Mat matImage = [image CVMat]; 


        //call the c++ class static member function
        //we want this function signature to exactly 
        //mirror the form of the calling method 
    matImage = CVSquares::detectedSquaresInImage (matImage, tolerance, threshold, levels);


        //convert back from cv::Mat openCV image format
        //to UIImage image format (category on UIImage)
    result = [UIImage imageFromCVMat:matImage]; 

    return result;
}

@end

CVSquares.h

//  CVSquares.h

#ifndef __OpenCVClient__CVSquares__
#define __OpenCVClient__CVSquares__

    //class definition
    //in this example we do not need a class 
    //as we have no instance variables and just one static function. 
    //We could instead just declare the function but this form seems clearer

class CVSquares
{
public:
    static cv::Mat detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels);
};

#endif /* defined(__OpenCVClient__CVSquares__) */

CVSquares.cpp

//  CVSquares.cpp

#include "CVSquares.h"

using namespace std;
using namespace cv;

static int thresh = 50, N = 11;
static float tolerance = 0.01;

    //declarations added so that we can move our 
    //public function to the top of the file
static void findSquares(  const Mat& image,   vector<vector<Point> >& squares );
static void drawSquares( Mat& image, vector<vector<Point> >& squares );

    //this public function performs the role of 
    //main{} in the original file (main{} is deleted)
cv::Mat CVSquares::detectedSquaresInImage (cv::Mat image, float tol, int threshold, int levels)
{
    vector<vector<Point> > squares;

    if( image.empty() )
        {
        cout << "Couldn't load " << endl;
        }

    tolerance = tol;
    thresh = threshold;
    N = levels;
    findSquares(image, squares);
    drawSquares(image, squares);

    return image;
}


// the rest of this file is identical to the original squares.cpp except:
// main{} is removed
// this line is removed from drawSquares: 
// imshow(wndname, image); 
// (obj-c will do the drawing)

UIImage+OpenCV.h

The UIImage category is an objC++ file containing the code to convert between UIImage and cv::Mat image formats. This is where you move your two methods -(UIImage *)UIImageFromCVMat:(cv::Mat)cvMat and - (cv::Mat)cvMatWithImage:(UIImage *)image

//UIImage+OpenCV.h

#import <UIKit/UIKit.h>

@interface UIImage (UIImage_OpenCV)

    //cv::Mat to UIImage
+ (UIImage *)imageFromCVMat:(cv::Mat&)cvMat;

    //UIImage to cv::Mat
- (cv::Mat)CVMat;


@end        

The method implementations here are unchanged from your code (although we don't pass a UIImage in to convert, instead we refer to self)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...