This is a standard use case for numpy's broadcasting:
df['Values'].values - df['Values'].values[:, None]
Out:
array([[ 0. , -30.7, -14.5],
[ 30.7, 0. , 16.2],
[ 14.5, -16.2, 0. ]])
We access the underlying numpy array with the values attribute and [:, None]
introduces a new axis so the result is two dimensional.
You can concat this with your original Series:
arr = df['Values'].values - df['Values'].values[:, None]
pd.concat((df['Country'], pd.DataFrame(arr, columns=df['Country'])), axis=1)
Out:
Country GB JP US
0 GB 0.0 -30.7 -14.5
1 JP 30.7 0.0 16.2
2 US 14.5 -16.2 0.0
The array can also be generated with the following, thanks to @Divakar:
arr = np.subtract.outer(*[df.Values]*2).T
Here we are calling .outer
on the subtract
ufunc and it applies it to all pair of its inputs.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…