Note for users with pandas version under < 0.20.0, I will be using df.melt(...)
for my examples, but your version would be too low for df.melt
, you would need to use pd.melt(df, ...)
instead.
Documentation references:
Most of the solutions here would be used with melt
, so to know the method melt
, see the documentaion explanation
Unpivot a DataFrame from wide to long format, optionally leaving
identifiers set.
This function is useful to massage a DataFrame into a format where one
or more columns are identifier variables (id_vars), while all other
columns, considered measured variables (value_vars), are “unpivoted”
to the row axis, leaving just two non-identifier columns, ‘variable’
and ‘value’.
And the parameters are:
Parameters
id_vars : tuple, list, or ndarray, optional
Column(s) to use as identifier variables.
value_vars : tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
var_name : scalar
Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.
value_namescalar, default ‘value’
Name to use for the ‘value’ column.
col_level : int or str, optional
If columns are a MultiIndex then use this level to melt.
ignore_index : bool, default True
If True, original index is ignored. If False, the original index is retained. Index labels will be repeated
as necessary.
New in version 1.1.0.
Logic to melting:
Melting merges multiple columns and converts the dataframe from wide to long, for the solution to Problem 1 (see below), the steps are:
First we got the original dataframe.
Then the melt firstly merges the Math
and English
columns and makes the dataframe replicated (longer).
Then finally adds the column Subject
which is the subject of the Grades
columns value respectively.
This is the simple logic to what the melt
function does.
Solutions:
I will solve my own questions.
Problem 1:
Problem 1 could be solve using pd.DataFrame.melt
with the following code:
print(df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades'))
This code passes the id_vars
argument to ['Name', 'Age']
, then automatically the value_vars
would be set to the other columns (['Math', 'English']
), which is transposed into that format.
You could also solve Problem 1 using stack
like the below:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index(name="Grade")
.rename(columns={"level_2": "Subject"})
.sort_values("Subject")
.reset_index(drop=True)
)
This code sets the Name
and Age
columns as the index and stacks the rest of the columns Math
and English
, and resets the index and assigns Grade
as the column name, then renames the other column level_2
to Subject
and then sorts by the Subject
column, then finally resets the index again.
Both of these solutions output:
Name Age Subject Grade
0 Bob 13 English C
1 John 16 English B
2 Foo 14 English B
3 Bar 15 English A+
4 Alex 17 English F
5 Tom 12 English A
6 Bob 13 Math A+
7 John 16 Math B
8 Foo 14 Math A
9 Bar 15 Math F
10 Alex 17 Math D
11 Tom 12 Math C
Problem 2:
This is similar to my first question, but this one I only one to filter in the Math
columns, this time the value_vars
argument can come into use, like the below:
print(
df.melt(
id_vars=["Name", "Age"],
value_vars="Math",
var_name="Subject",
value_name="Grades",
)
)
Or we can also use stack
with column specification:
print(
df.set_index(["Name", "Age"])[["Math"]]
.stack()
.reset_index(name="Grade")
.rename(columns={"level_2": "Subject"})
.sort_values("Subject")
.reset_index(drop=True)
)
Both of these solutions give:
Name Age Subject Grade
0 Bob 13 Math A+
1 John 16 Math B
2 Foo 16 Math A
3 Bar 15 Math F
4 Alex 15 Math D
5 Tom 13 Math C
Problem 3:
Problem 3 could be solved with melt
and groupby
, using the agg
function with ', '.join
, like the below:
print(
df.melt(id_vars=["Name", "Age"])
.groupby("value", as_index=False)
.agg(", ".join)
)
It melts the dataframe then groups by the grades and aggregates them and joins them by a comma.
stack
could be also used to solve this problem, with stack
and groupby
like the below:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index()
.rename(columns={"level_2": "Subjects", 0: "Grade"})
.groupby("Grade", as_index=False)
.agg(", ".join)
)
This stack
function just transposes the dataframe in a way that is equivalent to melt
, then resets the index, renames the columns and groups and aggregates.
Both solutions output:
Grade Name Subjects
0 A Foo, Tom Math, English
1 A+ Bob, Bar Math, English
2 B John, John, Foo Math, English, English
3 C Bob, Tom English, Math
4 D Alex Math
5 F Bar, Alex Math, English
Problem 4:
We first melt the dataframe for the input data:
df = df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')
Then now we can start solving this Problem 4.
Problem 4 could be solved with pivot_table
, we would have to specify to the pivot_table
arguments, values
, index
, columns
and also aggfunc
.
We could solve it with the below code:
print(
df.pivot_table("Grades", ["Name", "Age"], "Subject", aggfunc="first")
.reset_index()
.rename_axis(columns=None)
)
Output:
Name Age English Math
0 Alex 15 F D
1 Bar 15 A+ F
2 Bob 13 C A+
3 Foo 16 B A
4 John 16 B B
5 Tom 13 A C
The melted dataframe is converted back to the exact same format as the original dataframe.
We first pivot the melted dataframe and then reset the index and remove the column axis name.
Problem 5:
Problem 5 could be solved with melt
and groupby
like the following:
print(
df.melt(id_vars=["Name", "Age"], var_name="Subject", value_name="Grades")
.groupby("Name", as_index=False)
.agg(", ".join)
)
That melts and groups by Name
.
Or you could stack
:
print(
df.set_index(["Name", "Age"])
.stack()
.reset_index()
.groupby("Name", as_index=False)
.agg(", ".join)
.rename({"level_2": "Subjects", 0: "Grades"}, axis=1)
)
Both codes output:
Name Subjects Grades
0 Alex Math, English D, F
1 Bar Math, English F, A+
2 Bob Math, English A+, C
3 Foo Math, English A, B
4 John Math, English B, B
5 Tom Math, English C, A
Problem 6:
Problem 6 could be solved with melt
and no column needed to be specified, just specify the expected column names:
print(df.melt(var_name='Column', value_name='Value'))
That melts the whole dataframe
Or you could stack
:
print(
df.stack()
.reset_index(level=1)
.sort_values("level_1")
.reset_index(drop=True)
.set_axis(["Column", "Value"], axis=1)
)
Both codes output:
Column Value
0 Age 16
1 Age 15
2 Age 15
3 Age 16
4