Sample code is here
import pandas as pd
import numpy as np
df = pd.DataFrame({'Customer' : ['Bob', 'Ken', 'Steve', 'Joe'],
'Spending' : [130,22,313,46]})
#[400000 rows x 4 columns]
df = pd.concat([df]*100000).reset_index(drop=True)
In [129]: %timeit df['Grade']= np.where(df['Spending'] > 100 ,'A','B')
10 loops, best of 3: 21.6 ms per loop
In [130]: %timeit df['grade'] = df.apply(lambda row: 'A' if row['Spending'] > 100 else 'B', axis = 1)
1 loop, best of 3: 7.08 s per loop
Question taken from here: https://stackoverflow.com/a/41166160/3027854
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…