I'm implementing Conway's game of life to teach myself Rust. The idea is to implement a single-threaded version first, optimize it as much as possible, then do the same for a multi-threaded version.
I wanted to implement an alternative data layout which I thought might be more cache-friendly. The idea is to store the status of two cells for each point on a board next to each other in memory in a vector, one cell for reading the current generation's status from and one for writing the next generation's status to, alternating the access pattern for each
generation's computation (which can be determined at compile time).
The basic data structures are as follows:
#[repr(u8)]
pub enum CellStatus {
DEAD,
ALIVE,
}
/** 2 bytes */
pub struct CellRW(CellStatus, CellStatus);
pub struct TupleBoard {
width: usize,
height: usize,
cells: Vec<CellRW>,
}
/** used to keep track of current pos with iterator e.g. */
pub struct BoardPos {
x_pos: usize,
y_pos: usize,
offset: usize,
}
pub struct BoardEvo {
board: TupleBoard,
}
The function that is causing me troubles:
impl BoardEvo {
fn evolve_step<T: RWSelector>(&mut self) {
for (pos, cell) in self.board.iter_mut() {
//pos: BoardPos, cell: &mut CellRW
let read: &CellStatus = T::read(cell); //chooses the right tuple half for the current evolution step
let write: &mut CellStatus = T::write(cell);
let alive_count = pos.neighbours::<T>(&self.board).iter() //<- can't borrow self.board again!
.filter(|&&status| status == CellStatus::ALIVE)
.count();
*write = CellStatus::evolve(*read, alive_count);
}
}
}
impl BoardPos {
/* ... */
pub fn neighbours<T: RWSelector>(&self, board: &BoardTuple) -> [CellStatus; 8] {
/* ... */
}
}
The trait RWSelector
has static functions for reading from and writing to a cell tuple (CellRW
). It is implemented for two zero-sized types L
and R
and is mainly a way to avoid having to write different methods for the different access patterns.
The iter_mut()
method returns a BoardIter
struct which is a wrapper around a mutable slice iterator for the cells vector and thus has &mut CellRW
as Item
type. It is also aware of the current BoardPos
(x and y coordinates, offset).
I thought I'd iterate over all cell tuples, keep track of the coordinates, count the number of alive neighbours (I need to know coordinates/offsets for this) for each (read) cell, compute the cell status for the next generation and write to the respective another half of the tuple.
Of course, in the end, the compiler showed me the fatal flaw in my design, as I borrow self.board
mutably in the iter_mut()
method and then try to borrow it again immutably to get all the neighbours of the read cell.
I have not been able to come up with a good solution for this problem so far. I did manage to get it working by making all
references immutable and then using an UnsafeCell
to turn the immutable reference to the write cell into a mutable one.
I then write to the nominally immutable reference to the writing part of the tuple through the UnsafeCell
.
However, that doesn't strike me as a sound design and I suspect I might run into issues with this when attempting to parallelize things.
Is there a way to implement the data layout I proposed in safe/idiomatic Rust or is this actually a case where you actually have to use tricks to circumvent Rust's aliasing/borrow restrictions?
Also, as a broader question, is there a recognizable pattern for problems which require you to circumvent Rust's borrow restrictions?
See Question&Answers more detail:
os