Some geometry with Paint:
0. You have a corner:
1. You know the coordinates of corner points, let it be P1, P2 and P:
2. Now you can get vectors from points and angle between vectors:
angle = atan(P
Y - P
1Y, P
X - P
1X) - atan(P
Y - P
2Y, P
X - P
2X)
3. Get the length of segment between angular point and the points of intersection with the circle.
segment = PC
1 = PC
2 = radius / |tan(angle / 2)|
4. Here you need to check the length of segment and the minimal length from PP1 and PP2:
Length of PP1:
PP
1 = sqrt((P
X - P
1X)
2 + (P
Y - P
1Y)
2)
Length of PP2:
PP
2 = sqrt((P
X - P
2X)
2 + (P
Y - P
2Y)
2)
If segment > PP1 or segment > PP2 then you need to decrease the radius:
min = Min(PP
1, PP
2) (for polygon is better to divide this value by 2)
segment > min ?
segment = min
radius = segment * |tan(angle / 2)|
5. Get the length of PO:
PO = sqrt(radius
2 + segment
2)
6. Get the C1X and C1Y by the proportion between the coordinates of the vector, length of vector and the length of the segment:
Proportion:
(P
X - C
1X) / (P
X - P
1X) = PC
1 / PP
1
So:
C
1X = P
X - (P
X - P
1X) * PC
1 / PP
1
The same for C1Y:
C
1Y = P
Y - (P
Y - P
1Y) * PC
1 / PP
1
7. Get the C2X and C2Y by the same way:
C
2X = P
X - (P
X - P
2X) * PC
2 / PP
2
C
2Y = P
Y - (P
Y - P
2Y) * PC
2 / PP
2
8. Now you can use the addition of vectors PC1 and PC2 to find the centre of circle by the same way by proportion:
(P
X - O
X) / (P
X - C
X) = PO / PC
(P
Y - O
Y) / (P
Y - C
Y) = PO / PC
Here:
C
X = C
1X + C
2X - P
X
C
Y = C
1Y + C
2Y - P
Y
PC = sqrt((P
X - C
X)
2 + (P
Y - C
Y)
2)
Let:
dx = P
X - C
X = P
X * 2 - C
1X - C
2X
dy = P
Y - C
Y = P
Y * 2 - C
1Y - C
2Y
So:
PC = sqrt(dx
2 + dy
2)
O
X = P
X - dx * PO / PC
O
Y = P
Y - dy * PO / PC
9. Here you can draw an arc. For this you need to get start angle and end angle of arc:
Found it here:
startAngle = atan((C
1Y - O
Y) / (C
1X - O
X))
endAngle = atan((C
2Y - O
Y) / (C
2X - O
X))
10. At last you need to get a sweep angle and make some checks for it:
sweepAngle = endAngle - startAngle
If sweepAngle < 0 then swap startAngle and endAngle, and invert sweepAngle:
sweepAngle < 0 ?
sweepAngle = - sweepAngle
startAngle = endAngle
Check if sweepAngle > 180 degrees:
sweepAngle > 180 ?
sweepAngle = 180 - sweepAngle
11. And now you can draw a rounded corner:
Some geometry with c#:
private void DrawRoundedCorner(Graphics graphics, PointF angularPoint,
PointF p1, PointF p2, float radius)
{
//Vector 1
double dx1 = angularPoint.X - p1.X;
double dy1 = angularPoint.Y - p1.Y;
//Vector 2
double dx2 = angularPoint.X - p2.X;
double dy2 = angularPoint.Y - p2.Y;
//Angle between vector 1 and vector 2 divided by 2
double angle = (Math.Atan2(dy1, dx1) - Math.Atan2(dy2, dx2)) / 2;
// The length of segment between angular point and the
// points of intersection with the circle of a given radius
double tan = Math.Abs(Math.Tan(angle));
double segment = radius / tan;
//Check the segment
double length1 = GetLength(dx1, dy1);
double length2 = GetLength(dx2, dy2);
double length = Math.Min(length1, length2);
if (segment > length)
{
segment = length;
radius = (float)(length * tan);
}
// Points of intersection are calculated by the proportion between
// the coordinates of the vector, length of vector and the length of the segment.
var p1Cross = GetProportionPoint(angularPoint, segment, length1, dx1, dy1);
var p2Cross = GetProportionPoint(angularPoint, segment, length2, dx2, dy2);
// Calculation of the coordinates of the circle
// center by the addition of angular vectors.
double dx = angularPoint.X * 2 - p1Cross.X - p2Cross.X;
double dy = angularPoint.Y * 2 - p1Cross.Y - p2Cross.Y;
double L = GetLength(dx, dy);
double d = GetLength(segment, radius);
var circlePoint = GetProportionPoint(angularPoint, d, L, dx, dy);
//StartAngle and EndAngle of arc
var startAngle = Math.Atan2(p1Cross.Y - circlePoint.Y, p1Cross.X - circlePoint.X);
var endAngle = Math.Atan2(p2Cross.Y - circlePoint.Y, p2Cross.X - circlePoint.X);
//Sweep angle
var sweepAngle = endAngle - startAngle;
//Some additional checks
if (sweepAngle < 0)
{
startAngle = endAngle;
sweepAngle = -sweepAngle;
}
if (sweepAngle > Math.PI)
sweepAngle = Math.PI - sweepAngle;
//Draw result using graphics
var pen = new Pen(Color.Black);
graphics.Clear(Color.White);
graphics.SmoothingMode = SmoothingMode.AntiAlias;
graphics.DrawLine(pen, p1, p1Cross);
graphics.DrawLine(pen, p2, p2Cross);
var left = circlePoint.X - radius;
var top = circlePoint.Y - radius;
var diameter = 2 * radius;
var degreeFactor = 180 / Math.PI;
graphics.DrawArc(pen, left, top, diameter, diameter,
(float)(startAngle * degreeFactor),
(float)(sweepAngle * degreeFactor));
}
private double GetLength(double dx, double dy)
{
return Math.Sqrt(dx * dx + dy * dy);
}
private PointF GetProportionPoint(PointF point, double segment,
double length, double dx, double dy)
{
double factor = segment / length;
return new PointF((float)(point.X - dx * factor),
(float)(point.Y - dy * factor));
}
To get points of arc you can use this:
//One point for each degree. But in some cases it will be necessary
// to use more points. Just change a degreeFactor.
int pointsCount = (int)Math.Abs(sweepAngle * degreeFactor);
int sign = Math.Sign(sweepAngle);
PointF[] points = new PointF[pointsCount];
for (int i = 0; i < pointsCount; ++i)
{
var pointX =
(float)(circlePoint.X
+ Math.Cos(startAngle + sign * (double)i / degreeFactor)
* radius);
var pointY =
(float)(circlePoint.Y
+ Math.Sin(startAngle + sign * (double)i / degreeFactor)
* radius);
points[i] = new PointF(pointX, pointY);
}