It allows you to compute correlation coefficients of >2 data sets, e.g.
>>> from numpy import *
>>> a = array([1,2,3,4,6,7,8,9])
>>> b = array([2,4,6,8,10,12,13,15])
>>> c = array([-1,-2,-2,-3,-4,-6,-7,-8])
>>> corrcoef([a,b,c])
array([[ 1. , 0.99535001, -0.9805214 ],
[ 0.99535001, 1. , -0.97172394],
[-0.9805214 , -0.97172394, 1. ]])
Here we can get the correlation coefficient of a,b (0.995), a,c (-0.981) and b,c (-0.972) at once. The two-data-set case is just a special case of N-data-set class. And probably it's better to keep the same return type. Since the "one value" can be obtained simply with
>>> corrcoef(a,b)[1,0]
0.99535001355530017
there's no big reason to create the special case.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…