I am trying to find the count of distinct values in each column using Pandas. This is what I did.
import pandas as pd
import numpy as np
# Generate data.
NROW = 10000
NCOL = 100
df = pd.DataFrame(np.random.randint(1, 100000, (NROW, NCOL)),
columns=['col' + x for x in np.arange(NCOL).astype(str)])
I need to count the number of distinct elements for each column, like this:
col0 9538
col1 9505
col2 9524
What would be the most efficient way to do this, as this method will be applied to files which have size greater than 1.5GB?
Based upon the answers, df.apply(lambda x: len(x.unique()))
is the fastest (notebook).
%timeit df.apply(lambda x: len(x.unique()))
10 loops, best of 3: 49.5 ms per loop
%timeit df.nunique()
10 loops, best of 3: 59.7 ms per loop
%timeit df.apply(pd.Series.nunique)
10 loops, best of 3: 60.3 ms per loop
%timeit df.T.apply(lambda x: x.nunique(), axis=1)
10 loops, best of 3: 60.5 ms per loop
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…