Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
403 views
in Technique[技术] by (71.8m points)

python - Pandas reset index on series to remove multiindex

I created a Series from a DataFrame, when I resampled some data with a count like so: where H2 is a DataFrame:

H3=H2[['SOLD_PRICE']]
H5=H3.resample('Q',how='count')
H6=pd.rolling_mean(H5,4)

This yielded a series that looks like this:

1999-03-31  SOLD_PRICE     NaN
1999-06-30  SOLD_PRICE     NaN
1999-09-30  SOLD_PRICE     NaN
1999-12-31  SOLD_PRICE    3.00
2000-03-31  SOLD_PRICE    3.00

with an index that looks like:

MultiIndex
[(1999-03-31 00:00:00, u'SOLD_PRICE'), (1999-06-30 00:00:00, u'SOLD_PRICE'), (1999-09-30 00:00:00, u'SOLD_PRICE'), (1999-12-31 00:00:00, u'SOLD_PRICE'),.....

I don't want the second column as an index. Ideally I'd have a DataFrame with column 1 as "Date" and column 2 as "Sales" (dropping the second level of the index). I don't quite see how to reconfigure the index.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Just call reset_index():

In [130]: s
Out[130]:
0           1
1999-03-31  SOLD_PRICE   NaN
1999-06-30  SOLD_PRICE   NaN
1999-09-30  SOLD_PRICE   NaN
1999-12-31  SOLD_PRICE     3
2000-03-31  SOLD_PRICE     3
Name: 2, dtype: float64

In [131]: s.reset_index()
Out[131]:
            0           1   2
0  1999-03-31  SOLD_PRICE NaN
1  1999-06-30  SOLD_PRICE NaN
2  1999-09-30  SOLD_PRICE NaN
3  1999-12-31  SOLD_PRICE   3
4  2000-03-31  SOLD_PRICE   3

There are many ways to drop columns:

Call reset_index() twice and specify a column:

In [136]: s.reset_index(0).reset_index(drop=True)
Out[136]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3

Delete the column after resetting the index:

In [137]: df = s.reset_index()

In [138]: df
Out[138]:
            0           1   2
0  1999-03-31  SOLD_PRICE NaN
1  1999-06-30  SOLD_PRICE NaN
2  1999-09-30  SOLD_PRICE NaN
3  1999-12-31  SOLD_PRICE   3
4  2000-03-31  SOLD_PRICE   3

In [139]: del df[1]

In [140]: df
Out[140]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3

Call drop() after resetting:

In [144]: s.reset_index().drop(1, axis=1)
Out[144]:
            0   2
0  1999-03-31 NaN
1  1999-06-30 NaN
2  1999-09-30 NaN
3  1999-12-31   3
4  2000-03-31   3

Then, after you've reset your index, just rename the columns

In [146]: df.columns = ['Date', 'Sales']

In [147]: df
Out[147]:
         Date  Sales
0  1999-03-31    NaN
1  1999-06-30    NaN
2  1999-09-30    NaN
3  1999-12-31      3
4  2000-03-31      3

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...